1 Introduction

The approximation properties of the q-analogue operators in compact disks have recently been an active area of the research in the field of the approximation theory [18]. Details of the q-calculus can be found in [911].

Balázs [12] defined the Bernstein-type rational functions. She gave an estimate for the order of its convergence and proved an asymptotic approximation theorem and a convergence theorem concerning the derivative of these operators. In [13], Balázs and Szabados obtained the best possible estimate under more restrictive conditions, in which both the weight and the order of convergence would be better than [12]. They applied their results to the approximation of certain improper integrals by quadrature sums of positive coefficients based on a finite number of equidistant nodes. The q-form of these operators was given by Doğru. He investigated Korovkin-type statistical approximation properties of these operators for the functions of one and two variables [14]. Atakut and Ispir [15] defined the bivariate real Bernstein-type rational functions of the Bernstein-type rational functions given by Balázs in [12] and proved the approximation theorems for these functions. Ispir and Gupta [16] studied the Bézier variant of generalized Kantrovich-type Balazs operators.

Approximation properties of the rational Balázs-Szabados operators on compact disks in the complex plane were investigated by Gal [17]. He proved the upper estimate in an approximation of these operators. Also, he obtained the exact degree of its approximation by using a Voronovskaja-type result. In [18], the approximation properties given by Gal in the complex plane was extended to the bivariate case.

The complex q-Balázs-Szabados operators was defined in [19] as follows:

R n q (f;z)= 1 s = 0 n 1 ( 1 + q s a n z ) j = 0 n q j ( j 1 ) / 2 f ( [ j ] q b n ) [ n j ] q ( a n z ) j ,

where f: D R [R,)C is uniformly continuous and bounded on [0,) with D R ={zC:|z|<R} for R>0, a n = [ n ] q β 1 , b n = [ n ] q β , q(0,1], 0<β 2 3 , nN, zC, and z 1 q s a n for s=0,1,2, .

We consider the following complex bivariate q-Balázs-Szabados operators of the tensor product kind:

R n , m q 1 , q 2 (f)( z 1 , z 2 )= k = 0 n j = 0 m f ( [ k ] q 1 b n , [ j ] q 2 b m ) p n , k ( z 1 ) p m , j ( z 2 ),
(1)

where f:( D R 1 [ R 1 ,))×( D R 2 [ R 2 ,))C is a uniformly continuous function bounded on [0,)×[0,), a n = [ n ] q 1 β 1 , b n = [ n ] q 1 β , a m = [ m ] q 2 β 1 , b m = [ m ] q 2 β for n,mN, q 1 , q 2 (0,1], 0<β 2 3 .

p n , k ( z 1 )= q 1 k ( k 1 ) / 2 [ n k ] q 1 ( a n z 1 ) k s 1 = 0 n 1 ( 1 + q 1 s 1 a n z 1 ) and p m , j ( z 2 )= q 2 j ( j 1 ) / 2 [ m j ] q 2 ( a m z 2 ) j s 2 = 0 m 1 ( 1 + q 2 s 2 a m z 2 )

for all s 1 =0,1,,n1, s 2 =0,1,,m1 and z 1 , z 2 C with z 1 1 q 1 s 1 a n and z 2 1 q 2 s 2 a m .

The complex bivariate q-Balázs-Szabados operators of the tensor product kind are well defined and linear, and these operators are analytic for all n n 0 , m m 0 , | z 1 | r 1 < [ n 0 ] q 1 1 β and | z 2 | r 2 < [ m 0 ] q 2 1 β .

The aim of this paper is to obtain the exact degree of approximation of the complex bivariate q-Balázs-Szabados operators of the tensor product kind. The Voronovskaja-type theorem in the bivariate case is very different from the univariate case, so the exact degree of approximation of these operators can be obtained for 0<β< 1 2 .

Throughout this paper, we denote by f r 1 , r 2 =max{|f( z 1 , z 2 )|:( z 1 , z 2 ) D ¯ r 1 × D ¯ r 1 } the uniform norm of the function f in the space of continuous functions on D ¯ r 1 × D ¯ r 1 and by f B ( [ 0 , ) × [ 0 , ) ) =sup{|f( z 1 , z 2 )|:( z 1 , z 2 )[0,)×[0,)} the norm of the function f in the space of bounded functions on [0,)×[0,), where D r ={zC:|z|<r} for r>0.

The convergence results will be obtained under the condition that f:( D R 1 [ R 1 ,))×( D R 2 [ R 2 ,))C is analytic in D R 1 × D R 2 for r 1 < R 1 and r 2 < R 2 , which ensures the representation f( z 1 , z 2 )= k = 0 f k ( z 2 ) z 1 k , where f k ( z 2 )= j = 0 c k , j z 2 j for all ( z 1 , z 2 ) D R 1 × D R 2 .

2 Auxiliary results

Let q=( q n ) be a sequence satisfying

lim n q n =1and lim n q n n =c(0c<1).
(2)

We need the following lemmas in order to prove the main results for the operators (1).

Lemma 1 Let n 0 , m 0 2, 0<β 2 3 , 1 2 < r 1 < R 1 [ n 0 ] q 1 1 β 2 and 1 2 < r 2 < R 2 [ m 0 ] q 1 1 β 2 . If f:( D R 1 [ R 1 ,))×( D R 2 [ R 2 ,))C is a uniformly continuous function bounded on [0,)×[0,) and analytic in D R 1 × D R 2 then we have the form

R n , m q 1 , q 2 (f)( z 1 , z 2 )= k = 0 j = 0 c k , j R n , m q 1 , q 2 ( e k , j )( z 1 , z 2 )

for all ( z 1 , z 2 ) D r 1 × D r 2 , where ( e k , j )( z 1 , z 2 )= e 1 k ( z 1 ) e 2 j ( z 2 ) with e 1 k ( z 1 )= z 1 k , e 2 j ( z 2 )= z 2 j for k,jN.

Proof For any s,rN, we define

f s , r ( z 1 , z 2 ) = k = 0 s j = 0 r c k , j e k , j ( z 1 , z 2 ) if  | z 1 | r 1 , | z 2 | r 2 and  f s , r ( z 1 , z 2 ) = f ( z 1 , z 2 ) if  ( z 1 , z 2 ) ( r 1 , ) × ( r 2 , ) .

From the hypothesis on f, it is clear that each f s , r is bounded on [0,)×[0,), which implies that

| R n , m q 1 , q 2 ( f s , r )( z 1 , z 2 )| k = 0 n j = 0 m | p n , k ( z 1 )|| p m , j ( z 2 )| M f s , r <,

where M f s , r is a constant depending on f s , r , so all R n , m q 1 , q 2 ( f s , r ) are well defined for all n,mN, n n 0 , m m 0 , r 1 < [ n 0 ] q 1 β 2 , r 2 < [ m 0 ] q 1 β 2 and ( z 1 , z 2 ) D r 1 × D r 2 .

Defining

f s , r , k , j ( z 1 , z 2 ) = c k , j e k , j ( z 1 , z 2 ) if  | z 1 | r 1 , | z 2 | r 2 and f s , r , k , j ( z 1 , z 2 ) = f ( z 1 , z 2 ) ( s + 1 ) ( r + 1 ) if  ( z 1 , z 2 ) ( r 1 , ) × ( r 2 , ) .

It is clear that each f s , r , k , j is bounded on [0,)×[0,) and

f s , r ( z 1 , z 2 )= k = 0 s j = 0 r f s , r , k , j ( z 1 , z 2 ).

From the linearity of R n , m q 1 , q 2 , we have

R n , m q 1 , q 2 ( f s , r )( z 1 , z 2 )= k = 0 s j = 0 r c k , j R n , m q 1 , q 2 ( e k , j )( z 1 , z 2 ).

It suffices to prove that

lim s , r R n , m q 1 , q 2 ( f s , r )( z 1 , z 2 )= R n , m q 1 , q 2 (f)( z 1 , z 2 )

for any fixed n,mN, n n 0 , m m 0 , | z 1 | r 1 and | z 2 | r 2 . Since

f s , r f B ( [ 0 , ) × [ 0 , ) ) f s , r f r 1 , r 2 ,

we can write

| R n , m q 1 , q 2 ( f s , r ) ( z 1 , z 2 ) R n , m q 1 , q 2 ( f ) ( z 1 , z 2 ) | M r 1 , r 2 , m , n q 1 , q 2 f s , r f B ( [ 0 , ) × [ 0 , ) ) M r 1 , r 2 , m , n q 1 , q 2 f s , r f r 1 , r 2
(3)

for | z 1 | r 1 and | z 2 | r 2 .

In equation (3), taking the limit as s,r and using lim s , r f s , r f r 1 , r 2 =0, we get the result. □

Lemma 2 Let n 0 , m 0 2, 0<β 2 3 , 1 2 < r 1 < R 1 [ n 0 ] q 1 1 β 2 and 1 2 < r 2 < R 2 [ m 0 ] q 2 1 β 2 . For all n n 0 , m m 0 , | z 1 | r 1 , | z 2 | r 2 and k=0,1,2, the following inequality holds:

| R n , m q 1 , q 2 ( e k , j )( z 1 , z 2 )|k!j! ( 20 r 1 ) k ( 20 r 2 ) j .

Proof Using Lemma 4 in [19], the lemma is easily proved, so we omit the proof of the lemma. □

3 Main results

Let us denote by A C the space of all uniformly continuous complex valued functions defined on ( D R 1 [ R 1 ,))×( D R 2 [ R 2 ,)), bounded on [0,)×[0,) and analytic in D R 1 × D R 2 and for which there exist M>0, 0< A 1 < 1 20 r 1 and 0< A 2 < 1 20 r 2 with | c k , j |M A 1 k A 2 j k ! j ! for all k,j=0,1,2, (which implies |f( z 1 , z 2 )|M e A 1 | z 1 | + A 2 | z 2 | for all ( z 1 , z 2 ) D R 1 × D R 2 ).

We have the following upper estimate.

Theorem 1 Let q 1 =( q 1 , n ) and q 2 =( q 2 , m ) be sequences satisfying the conditions given in equation (2) and let n 0 , m 0 2, 0<β 2 3 , 1 2 < r 1 < R 1 [ n 0 ] q 1 1 β 2 and 1 2 < r 2 < R 2 [ m 0 ] q 2 1 β 2 . If f A C , then for all n n 0 , m m 0 , | z 1 | r 1 and | z 2 | r 2 the following inequality holds:

| R n , m q 1 , q 2 (f)( z 1 , z 2 )f( z 1 , z 2 )| ( a n + 1 b n ) C 3 (f)+ ( a m + 1 b m ) C 4 (f),

where

C 3 ( f ) = max { M r 1 r 2 e 2 r 1 A 1 + r 2 A 2 , 9 M e r 2 A 2 k = 1 ( k 1 ) ( 20 r 1 A 1 ) k 1 } , C 4 ( f ) = max { 2 M ( r 2 ) 2 e 2 r 2 A 2 k = 0 ( 20 r 1 A 1 ) k , 9 M k = 0 ( 20 r 1 A 1 ) k j = 1 ( j 1 ) ( 20 r 2 A 2 ) j 1 } ,

and also the series k = 0 ( 20 r 1 A 1 ) k , k = 1 (k1) ( 20 r 1 A 1 ) k 1 and j = 1 (j1) ( 20 r 2 A 2 ) j 1 are convergent.

Proof Using Lemma 1, we can write

| R n , m q 1 , q 2 (f)( z 1 , z 2 )f( z 1 , z 2 )| k = 0 j = 0 | c k , j || R n , m q 1 , q 2 ( e k , j )( z 1 , z 2 ) e k , j ( z 1 , z 2 )|.
(4)

Taking into account Lemma 4 in [19] and the estimate given in the proof of Theorem 2 in [19], for all | z 1 | r 1 and | z 2 | r 2 , we obtain

| R n , m q 1 , q 2 ( e k , j ) ( z 1 , z 2 ) e k , j ( z 1 , z 2 ) | = | R n q 1 ( e 1 k ) ( z 1 ) . R m q 2 ( e 2 j ) ( z 2 ) z 1 k z 2 j | | R n q 1 ( e 1 k ) ( z 1 ) | | R m q 2 ( e 2 j ) ( z 2 ) z 2 j | + | z 2 j | | R n q 1 ( e 1 k ) ( z 1 ) z 1 k | ( k ! ) ( 20 r 1 ) k { 2 a m ( r 2 ) 2 j ( 2 r 2 ) j 1 + 9 b m ( j 1 ) ( j ! ) ( 20 r 2 ) j 1 } + ( r 2 ) j { 2 a n ( r 1 ) 2 k ( 2 r 1 ) k 1 + 9 b n ( k 1 ) ( k ! ) ( 20 r 1 ) k 1 } = 2 a n ( r 1 ) 2 ( 2 r 1 ) k 1 j ( r 2 ) j + 2 a m ( r 2 ) 2 ( k ! ) ( 20 r 1 ) k ( 2 r 2 ) j 1 + 9 b n ( k 1 ) ( k ! ) ( 20 r 1 ) k 1 ( r 2 ) j + 9 b m ( k ! ) ( 20 r 1 ) k ( j 1 ) ( j ! ) ( 20 r 2 ) j 1 .
(5)

Applying equation (5) in equation (4), we get

| R n , m q 1 , q 2 ( f ) ( z 1 , z 2 ) f ( z 1 , z 2 ) | a n M r 1 r 2 e 2 r 1 A 1 + r 2 A 2 + 2 a m M ( r 2 ) 2 e 2 r 2 A 2 k = 0 ( 20 r 1 A 1 ) k + 9 M b n e r 2 A 2 k = 1 ( k 1 ) ( 20 r 1 A 1 ) k 1 + 9 M b m k = 0 ( 20 r 1 A 1 ) k j = 1 ( j 1 ) ( 20 r 2 A 2 ) j 1 .

Choosing C 3 (f) and C 4 (f) as given in the theorem, we reach the desired result. □

For f( z 1 , z 2 ), we define the parametric extensions of the Voronovskaja formula by

z 1 L n , q 1 ( f ) ( z 1 , z 2 ) : = R n q 1 ( f ( , z 2 ) ) ( z 1 ) f ( z 1 , z 2 ) ψ n , q 1 1 ( z 1 ) f z 1 ( z 1 , z 2 ) 1 2 ψ n , q 1 2 ( z 1 ) 2 f z 1 2 ( z 1 , z 2 )

and

z 2 L m , q 2 ( f ) ( z 1 , z 2 ) : = R m q 2 ( f ( z 1 , ) ) ( z 2 ) f ( z 1 , z 2 ) ψ m , q 2 1 ( z 2 ) f z 2 ( z 1 , z 2 ) 1 2 ψ m , q 2 2 ( z 2 ) 2 f z 2 2 ( z 1 , z 2 ) ,

where ψ k , q i (z)= R k q ( ( t z ) i ;z) for i=1,2 given in Lemma 6 in [19].

Their product (composition) gives

z 2 L m , q 2 ( f ) ( z 1 , z 2 ) z 1 L n , q 1 ( f ) ( z 1 , z 2 ) = R m q 2 ( R n q 1 ( f ( , ) ) ( z 1 ) f ( z 1 , ) ψ n , q 1 1 ( z 1 ) f z 1 ( z 1 , ) ψ n , q 1 2 ( z 1 ) 2 f z 1 2 ( z 1 , ) ) ( z 2 ) [ R n q 1 ( f ( , z 2 ) ) ( z 1 ) f ( z 1 , z 2 ) ψ n , q 1 1 ( z 1 ) f z 1 ( z 1 , z 2 ) ψ n , q 1 2 ( z 1 ) 2 f z 1 2 ( z 1 , z 2 ) ] ψ m , q 2 1 ( z 2 ) [ R n q 1 ( f z 2 ( , z 2 ) ) ( z 1 ) f z 2 ( z 1 , z 2 ) ψ n , q 1 1 ( z 1 ) 2 f z 2 z 1 ( z 1 , z 2 ) ψ n , q 1 2 ( z 1 ) 3 f z 2 z 1 2 ( z 1 , z 2 ) ] ψ m , q 2 2 ( z 2 ) [ R n q 1 ( 2 f z 2 2 ( , z 2 ) ) ( z 1 ) 2 f z 2 2 ( z 1 , z 2 ) ψ n , q 1 1 ( z 1 ) 3 f z 2 2 z 1 ( z 1 , z 2 ) ψ n , q 1 2 ( z 1 ) 4 f z 2 2 z 1 2 ( z 1 , z 2 ) ] : = E 1 E 2 + E 3 E 4 .
(6)

After a simple calculation, we obtain the commutativity property,

z 2 L m , q 2 (f)( z 1 , z 2 ) z 1 L n , q 1 (f)( z 1 , z 2 )= z 1 L n , q 1 (f)( z 1 , z 2 ) z 2 L m , q 2 (f)( z 1 , z 2 ).

In the following a Voronovskaja-type result for the operators (1) is presented. It will be the product of the parametric extensions generated by Voronovskaja’s formula in the univariate case.

Theorem 2 Let q 1 =( q 1 , n ) and q 2 =( q 2 , m ) be sequences satisfying the conditions given in equation (2) and let n 0 , m 0 2, 0<β 2 3 , 1 2 < r 1 < R 1 [ n 0 ] q 1 1 β 2 and 1 2 < r 2 < R 2 [ m 0 ] q 2 1 β 2 . If f A C , then for all n n 0 , m m 0 , | z 1 | r 1 and | z 2 | r 2 the following inequality holds:

| z 2 L m , q 2 (f)( z 1 , z 2 ) z 1 L n , q 1 (f)( z 1 , z 2 )| C 5 (f) [ ( a n + 1 b n ) 2 + ( a m + 1 b m ) 2 ] ,

where C 5 (f)= 1 2 max{ C r 1 , r 2 1 (f), C r 1 , r 2 2 (f)}, C , and C are fixed constants,

C r 1 , r 2 1 ( f ) = M r 1 3 e r 2 A 2 k = 2 ( k 2 ) ( k 1 ) k ( k + 1 ) ( 20 r 1 A 1 ) k 3 × max { C e r 2 A 2 j = 0 ( 20 r 2 A 2 ) j , C , C r 2 A 2 , C ( 1 + r 2 + r 2 2 ) r 2 A 2 2 }

and

C r 1 , r 2 2 ( f ) = M r 2 3 e r 1 A 1 j = 2 ( j 2 ) ( j 1 ) j ( j + 1 ) ( 20 r 2 A 2 ) j 3 × max { C e r 1 A 1 k = 0 ( 20 r 1 A 1 ) k , C , C r 1 A 1 , C ( 1 + r 1 + r 1 2 ) r 1 A 1 2 } .

Proof From the analyticity of f in D R 1 × D R 2 , since all partial derivatives of f are analytic in D R 1 × D R 2 , using Lemma 1, we can write

R n q 1 ( f ( , z 2 ) ) ( z 1 ) f ( z 1 , z 2 ) ψ n , q 1 1 ( z 1 ) f z 1 ( z 1 , z 2 ) ψ n , q 1 2 ( z 1 ) 2 f z 1 2 ( z 1 , z 2 ) = k = 2 f k ( z 2 ) [ R n q 1 ( e 1 k ) ( z 1 ) e 1 k ( z 1 ) ψ n , q 1 1 ( z 1 ) k z 1 k 1 ψ n , q 1 2 ( z 1 ) k ( k 1 ) z 1 k 2 ] .
(7)

Applying now R m q 2 to equation (7) with respect to z 2 and Lemma 1 in [19], we obtain

E 1 = k = 2 R m q 2 ( f k ) ( z 2 ) [ R n q 1 ( e 1 k ) ( z 1 ) e 1 k ( z 1 ) ψ n , q 1 1 ( z 1 ) k z 1 k 1 ψ n , q 1 2 ( z 1 ) k ( k 1 ) z 1 k 2 ] = k = 2 j = 0 c k , j R m q 2 ( e 2 j ) ( z 2 ) [ R n q 1 ( e 1 k ) ( z 1 ) e 1 k ( z 1 ) ψ n , q 1 1 ( z 1 ) k z 1 k 1 ψ n , q 1 2 ( z 1 ) k ( k 1 ) z 1 k 2 ] .
(8)

In equation (8), passing now to absolute value for | z 1 | r 1 and | z 2 | r 2 and taking into account the Lemma 4 in [19] and the estimate given in the proof of Theorem 3 in [19], it follows that

| E 1 | ( a n + 1 b n ) 2 j = 0 | c k , j | j ! ( 20 r 2 ) j k = 2 C ( k 2 ) ( k 1 ) k ( k + 1 ) k ! ( 20 r 1 ) k + 3 ( a n + 1 b n ) 2 M C r 1 3 j = 0 ( 20 r 2 A 2 ) j k = 2 ( k 2 ) ( k 1 ) k ( k + 1 ) ( 20 r 1 A 1 ) k 3
(9)

for | z 1 | r 1 and | z 2 | r 2 .

Similarly, using the estimate given in the proof of Theorem 3 in [19] for | z 1 | r 1 and | z 2 | r 2 we have

| E 2 | k = 2 | f k ( z 2 ) | | R n q 1 ( e 1 k ) ( z 1 ) e 1 k ( z 1 ) ψ n , q 1 1 ( z 1 ) k z 1 k 1 ψ n , q 1 2 ( z 1 ) k ( k 1 ) z 1 k 2 | ( a n + 1 b n ) 2 j = 0 | c k , j | r 2 j k = 2 C ( k 2 ) ( k 1 ) k ( k + 1 ) k ! ( 20 r 1 ) k + 3 ( a n + 1 b n ) 2 M C r 1 3 e r 2 A 2 k = 2 ( k 2 ) ( k 1 ) k ( k + 1 ) ( 20 r 1 A 1 ) k 3 .
(10)

Using

R n q 1 ( f z 2 ( , z 2 ) ) ( z 1 ) = k = 0 f k z 2 ( z 2 ) R n q 1 ( e 1 k ) ( z 1 ) = k = 0 j = 1 c k , j j z 2 j 1 R n q 1 ( e 1 k ) ( z 1 ) ,

we can write

E 3 = ψ m , q 2 1 ( z 2 ) [ R n q 1 ( f z 2 ( , z 2 ) ) ( z 1 ) f z 2 ( z 1 , z 2 ) ψ n , q 1 1 ( z 1 ) 2 f z 2 z 1 ( z 1 , z 2 ) ψ n , q 1 2 ( z 1 ) 3 f z 2 z 1 2 ( z 1 , z 2 ) ] = ψ m , q 2 1 ( z 2 ) k = 2 j = 1 c k , j j z 2 j 1 [ R n q 1 ( e 1 k ) ( z 1 ) e 1 k ( z 1 ) ψ n , q 1 1 ( z 1 ) k z 1 k 1 ψ n , q 1 2 ( z 1 ) k ( k 1 ) z 1 k 2 ] .

Considering Lemma 6 in [19] and the estimate given in the proof of Theorem 3 in [19], for | z 1 | r 1 and | z 2 | r 2 , we obtain

| E 3 | ( a n + 1 b n ) 2 | ψ m , q 2 1 ( z 2 ) | k = 2 j = 1 | c k , j | j r 2 j 1 C ( k 2 ) ( k 1 ) k ( k + 1 ) k ! ( 20 r 1 ) k + 3 ( a n + 1 b n ) 2 M C r 1 3 r 2 A 2 e r 2 A 2 k = 2 ( k 2 ) ( k 1 ) k ( k + 1 ) ( 20 r 1 A 1 ) k 3
(11)

and also, using

R n ( 2 f z 2 2 ( , z 2 ) ) ( z 1 ) = k = 0 2 f k z 2 2 ( z 2 ) R n ( e 1 k ) ( z 1 ) = k = 0 j = 2 c k , j j ( j 1 ) z 2 j 2 R n ( e 1 k ) ( z 1 ) ,

we can write

E 4 = ψ m , q 2 2 ( z 2 ) [ R n ( 2 f z 2 2 ( , z 2 ) ) ( z 1 ) 2 f z 2 2 ( z 1 , z 2 ) ψ n , q 1 1 ( z 1 ) 3 f z 1 z 2 2 ( z 1 , z 2 ) ψ n , q 1 2 ( z 1 ) 4 f z 1 2 z 2 2 ( z 1 , z 2 ) ] = ψ m , q 2 2 ( z 2 ) k = 2 j = 2 c k , j j ( j 1 ) z 2 j 2 [ R n q 1 ( e 1 k ) ( z 1 ) e 1 k ( z 1 ) ψ n , q 1 1 ( z 1 ) k z 1 k 1 ψ n , q 1 2 ( z 1 ) k ( k 1 ) z 1 k 2 ] .

Taking into account Lemma 6 in [19] and the estimate given in the proof of Theorem 3 in [19], for | z 1 | r 1 and | z 2 | r 2 we get

| E 4 | ( a n + 1 b n ) 2 | ψ m , q 2 2 ( z 2 ) | j = 2 j ( j 1 ) r 2 j 2 × k = 2 | c k , j | C ( k 2 ) ( k 1 ) k ( k + 1 ) k ! ( 20 r 1 ) k + 3 ( a n + 1 b n ) 2 M C r 1 3 ( 1 + r 2 + r 2 2 ) r 2 A 2 2 e A 2 r 2 × k = 2 ( k 2 ) ( k 1 ) k ( k + 1 ) ( 20 A 1 r 1 ) k 3
(12)

for | z 1 | r 1 and | z 2 | r 2 . Using equations (9)-(12), we get

| z 2 L m , q 2 ( f ) ( z 1 , z 2 ) z 1 L n , q 1 ( f ) ( z 1 , z 2 ) | | E 1 | + | E 2 | + | E 3 | + | E 4 | C r 1 , r 2 1 ( f ) ( a n + 1 b n ) 2 .

If we estimate | z 1 L n , q 1 (f)( z 1 , z 2 ) z 2 L m , q 2 (f)( z 1 , z 2 )|, then by reason of the symmetry we get a similar order of approximation, simply interchanging above the places of n with m and r 1 with r 2 .

In conclusion, using the commutativity property, we reach the result. □

Let us denote by A C ( 2 ) the space of all complex valued functions where they and their first and second partial derivatives are uniformly continuous on ( D R 1 [ R 1 ,))×( D R 2 [ R 2 ,)), bounded on [0,)×[0,) and analytic in D R 1 × D R 2 , and there exist M>0, 0< A 1 < 1 20 r 1 , 0< A 2 < 1 20 r 2 with | c k , j |M A 1 k A 2 j k ! j ! (which implies |f( z 1 , z 2 )|M e A 1 | z 1 | + A 2 | z 2 | for all ( z 1 , z 2 ) D R 1 × D R 2 ).

Theorems 1 and 2 will be used to find the exact degree in the approximation of R n , n q 1 , q 2 (f). In this sense, we have the following lower estimate.

Theorem 3 Let q 1 =( q 1 , n ) and q 2 =( q 2 , n ) be sequences satisfying the conditions given in equation (2) and let n 0 2, 0<β< 1 2 , 1 2 < r 1 < R 1 [ n 0 ] q 1 1 β 2 and 1 2 < r 2 < R 2 [ n 0 ] q 2 1 β 2 . If f A C ( 2 ) and f is not a solution of the complex partial differential equation

K(f)( z 1 , z 2 )= z 1 2 f z 1 2 ( z 1 , z 2 )+ z 2 2 f z 2 2 ( z 1 , z 2 )=0,

then for all n n 0 we have

R n , n q 1 , q 2 ( f ) f r 1 , r 2 1 36 ( 1 + a n b n ) ( a n + 1 b n ) K ( f ) r 1 , r 2 .

Proof From equation (6), we can write

R n , n q 1 , q 2 ( f ) ( z 1 , z 2 ) f ( z 1 , z 2 ) = 2 ( a n + 1 b n ) { K n ( f ) ( z 1 , z 2 ) + 2 ( a n + 1 b n ) [ D n ( f ) ( z 1 , z 2 ) 4 ( a n + 1 b n ) 2 ] + E n ( f ) ( z 1 , z 2 ) + F n ( f ) ( z 1 , z 2 ) + G n ( f ) ( z 1 , z 2 ) } ,
(13)

where

D n ( f ) ( z 1 , z 2 ) = z 2 L n , q 2 ( f ) ( z 1 , z 2 ) z 1 L n , q 1 ( f ) ( z 1 , z 2 ) , E n ( f ) ( z 1 , z 2 ) = z 1 L n , q 1 ( f ) ( z 1 , z 2 ) + z 2 L n , q 2 ( f ) ( z 1 , z 2 ) 2 ( a n + 1 b n ) , F n ( f ) ( z 1 , z 2 ) = h = 1 4 F n h ( f ) ( z 1 , z 2 )

with

F n 1 ( f ) ( z 1 , z 2 ) = b n ψ n , q 1 1 ( z 1 ) 2 ( 1 + a n b n ) [ R n q 2 ( f z 1 ( z 1 , ) ) ( z 2 ) f z 1 ( z 1 , z 2 ) ] , F n 2 ( f ) ( z 1 , z 2 ) = b n ψ n , q 2 1 ( z 2 ) 2 ( 1 + a n b n ) [ R n q 1 ( f z 2 ( , z 2 ) ) ( z 1 ) f z 2 ( z 1 , z 2 ) ] , F n 3 ( f ) ( z 1 , z 2 ) = b n ψ n , q 1 2 ( z 1 ) 4 ( 1 + a n b n ) [ R n q 2 ( 2 f z 1 2 ( z 1 , ) ) ( z 2 ) 2 f z 1 2 ( z 1 , z 2 ) ] , F n 4 ( f ) ( z 1 , z 2 ) = b n ψ n , q 2 2 ( z 2 ) 4 ( 1 + a n b n ) [ R n q 1 ( 2 f z 2 2 ( , z 2 ) ) ( z 1 ) 2 f z 2 2 ( z 1 , z 2 ) ] , G n ( f ) ( z 1 , z 2 ) = b n ψ n , q 1 1 ( z 1 ) 2 ( 1 + a n b n ) f z 1 ( z 1 , z 2 ) + b n ψ n , q 2 1 ( z 2 ) 2 ( 1 + a n b n ) f z 2 ( z 1 , z 2 ) G n ( f ) ( z 1 , z 2 ) = b n ψ n , q 2 1 ( z 2 ) ψ n , q 1 1 ( z 1 ) 2 ( 1 + a n b n ) 2 f z 2 z 1 ( z 1 , z 2 ) G n ( f ) ( z 1 , z 2 ) = b n ψ n , q 2 1 ( z 2 ) ψ n , q 1 2 ( z 1 ) 4 ( 1 + a n b n ) 3 f z 2 z 1 2 ( z 1 , z 2 ) G n ( f ) ( z 1 , z 2 ) = b n ψ n , q 2 2 ( z 2 ) ψ n , q 1 1 ( z 1 ) 4 ( 1 + a n b n ) 3 f z 2 2 z 1 ( z 1 , z 2 ) G n ( f ) ( z 1 , z 2 ) = b n ψ n , q 2 2 ( z 2 ) ψ n , q 1 2 ( z 1 ) 8 ( 1 + a n b n ) 4 f z 2 2 z 1 2 ( z 1 , z 2 ) ,

and

K n (f)( z 1 , z 2 )= b n 4 ( 1 + a n b n ) { ψ n , q 1 2 ( z 1 ) 2 f z 1 2 ( z 1 , z 2 ) + ψ n , q 2 2 ( z 2 ) 2 f z 2 2 ( z 1 , z 2 ) } .

Considering Theorems 2 and 3 in [19], we get

lim n E n (f)( z 1 , z 2 )=0and lim n F n (f)( z 1 , z 2 )=0.

Under the conditions of the theorem, since lim n a n =0, lim n 1 b n =0, lim n a n b n =0 for 0<β< 1 2 , it is also clear that

lim n G n (f)( z 1 , z 2 )=0.

From Theorem 2, we obtain

lim n 2 ( a n + 1 b n ) [ D n ( f ) 4 ( a n + 1 b n ) 2 ] + E n ( f ) + F n ( f ) + G n ( f ) r 1 , r 2 =0.

Using lim n a n b n =0 for 0<β< 1 2 and 1 1 + a n | z 1 | 2 3 , we get

K n ( f ) r 1 , r 2 1 18 ( 1 + a n b n ) | z 1 || 2 f z 1 2 ( z 1 , z 2 )|.
(14)

Similarly, it follows that

K n ( f ) r 1 , r 2 1 18 ( 1 + a n b n ) | z 2 || 2 f z 2 2 ( z 1 , z 2 )|.
(15)

From equations (14) and (15), we can write

K n ( f ) r 1 , r 2 1 36 ( 1 + a n b n ) K ( f ) r 1 , r 2 .
(16)

In equation (13), taking into account the inequalities

H + T r 1 , r 2 | H r 1 , r 2 T r 1 , r 2 | H r 1 , r 2 T r 1 , r 2 ,

and equation (16), it follows that

R n , n q 1 , q 2 ( f ) f r 1 , r 2 2 ( a n + 1 b n ) { K n ( f ) r 1 , r 2 2 ( a n + 1 b n ) [ D n ( f ) 4 ( a n + 1 b n ) 2 ] + E n ( f ) + F n ( f ) + G n ( f ) r 1 , r 2 } ( a n + 1 b n ) K n ( f ) r 1 , r 2 ( a n + 1 b n ) 1 36 ( 1 + a n b n ) K ( f ) r 1 , r 2

for all n n 0 with n 0 depending only f, r 1 and r 2 . We used that by hypothesis we have K ( f ) r 1 , r 2 >0. □

Combining Theorem 2 with Theorem 3, we immediately obtain the following result giving the exact degree of the operators (1).

Corollary 1 Suppose that the hypothesis in the statement of Theorem  3 holds. If the Taylor series of f contains at least one term of the form c k , 0 z 1 k with c k , 0 0 and k2 or of the form c 0 , j z 2 j with c 0 , j 0 and j2, then for all n n 0 we have

R n , n q 1 , q 2 ( f ) f r 1 , r 2 ( a n + 1 b n ) .

Proof It suffices to prove that, under the hypothesis on f, it cannot be a solution of the complex partial differential equation

z 1 2 f z 1 2 ( z 1 , z 2 )+ z 2 2 f z 2 2 ( z 1 , z 2 )=0,| z 1 |< R 1 ,| z 2 |< R 2 .

Indeed, suppose the contrary. Since a simple calculation gives

z 1 2 f z 1 2 ( z 1 , z 2 ) + z 2 2 f z 2 2 ( z 1 , z 2 ) = k = 1 c k + 1 , 0 k ( k + 1 ) z 1 k + k = 1 c k + 1 , 1 k ( k + 1 ) z 1 k z 2 + 2 j = 2 c 2 , j z 1 z 2 j + k = 2 j = 2 c k + 1 , j k ( k + 1 ) z 1 k z 2 j , + j = 1 c 0 , j + 1 j ( j + 1 ) z 2 j + j = 1 c 1 , j + 1 j ( j + 1 ) z 1 z 2 j + 2 k = 2 c k , 2 z 1 k z 2 + k = 2 j = 2 c k , j + 1 j ( j + 1 ) z 1 k z 2 j ,

by setting equal to zero and by the identification of the coefficients, from the terms under the first and fifth sign ∑, we immediately get c k + 1 , 0 = c 0 , j + 1 =0, for all k=1,2, and j=1,2, , which contradicts the hypothesis on f. Therefore the hypothesis and the lower estimate in Theorem 3 are satisfied, which completes the proof. □