1 Introduction

Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relation ≤ defined by the cone P. Let F i j ,g,f:X×XX be single-valued nonlinear ordered compression mappings, and let F i j be a Lipschitz continuous mapping (i,j=1,2), and for any x,yX,

range(f)dom ( F 11 ( , y ) ) range(g)dom ( F 22 ( x , ) ) ,

we consider the following problem:

For u,vX, find x,yX such that

{ u F 11 ( f ( x ) , y ) + F 12 ( y , x ) , v F 21 ( x , y ) F 22 ( x , g ( y ) ) ,
(1.1)

which is called a generalized nonlinear mixed ordered variational inequality system (GNM ordered variational inequality system) with ordered Lipschitz continuous mappings in an ordered Banach space. Obviously, system (1.1) belongs to a new class of generalized nonlinear mixed ordered variational inequality systems with the ⊕ calculation.

For a suitable choice of the mappings u, v, f, g, F i j (i,j=1,2) and the space X, a number of known classes of ordered variational inequalities, which have been studied by the authors as special cases of system (1.1) in the Banach space (see [1, 2]).

Remark 1.1 Some special cases of system (1.1):

  1. (1)

    Let F 12 (,)= F 21 (,)= F 22 (,)=0 be zero operators, u=v=θ and F 11 (f(x),y)=A(x) for any yX, then system (1.1) becomes the following problem: Find xX such that

    θA ( f ( x ) ) ,
    (1.2)

    which is called a generalized nonlinear ordered variational inequality (a generalized nonlinear ordered equation, as changed ≥ to =) in an ordered Banach space (see [1]).

  2. (2)

    Let F 11 (,)= F 12 (,)=0 be zero operators, F 21 (f(x),y)=A(x), u=v=θ and F 22 (x,g(y))=F(x,g(x)) for any y=x, then system (1.1) becomes the following problem: Find xX such that

    θA(x)F ( x ; g ( x ) ) ,
    (1.3)

    which is called a new class of general nonlinear ordered variational inequality (a general nonlinear ordered equation, as changed ≥ to =) in an ordered Banach space (see [2]).

  3. (3)

    Let F 21 (,)= F 22 (,)=0 be zero operators and u=v=θ, then system (1.1) becomes the following problem: Find x,yX such that

    θ F 11 ( f ( x ) , y ) + F 12 (y,x),
    (1.4)

    which is studied by many authors in a Banach space (see [3]et al.).

In recent years, though we have succeeded in the area of studies of variational inequality (inclusion) systems, yet, the studies of ordered variational inequality (inclusion) systems are beginning in very recent research works on an ordered Banach space (see [1, 2, 49]). From 1999 till present, some new and interesting problems for systems of variational inequalities (inclusions) have been introduced and studied in this field (see [132]).

Very recently, the approximation solution for general nonlinear ordered variational inequalities and ordered equations [1, 2] and a nonlinear ordered inclusion problem [8, 9] have been studied by Li in an ordered Banach space. For details, we refer the reader to [132] and the references therein.

2 Preliminaries

We need to recall the following concepts and results for solving system (1.1).

Definition 2.1 [21]

Let X be a real ordered Banach space with a norm , a normal cone P and a partial ordered relation ≤ defined by the cone P, for x,yX, if xy (or yx) holds, then x and y are said to be a comparison between each other (denoted by xy for xy and yx).

Lemma 2.2 [1]

Let X be a real ordered Banach space with a norm , a normal cone P and a partial ordered relationdefined by the cone P, for arbitrary x,yX, lub{x,y} and glb{x,y} express the least upper bound of the set {x,y} and the greatest lower bound of the set {x,y} on the partial ordered relation ≤, respectively. Suppose that lub{x,y} and glb{x,y} exist, some binary operators can be defined as follows:

  1. (1)

    xy=lub{x,y};

  2. (2)

    xy=glb{x,y};

  3. (3)

    xy=(xy)(yx).

∨, ∧, andare called OR, AND, and XOR operations, respectively. For arbitrary x,y,wX, the following relations hold:

  1. (1)

    xy=yx;

  2. (2)

    xx=θ;

  3. (3)

    θxθ;

  4. (4)

    let λ be real, then (λx)(λy)=|λ|(xy);

  5. (5)

    if x, y, and w can be compared with each other, then

    (xy)xw+wy;
  6. (6)

    let (x+y)(u+v) exist, and if xu,v and yu,v, then

    (x+y)(u+v)(xu+yv)(xv+yu);
  7. (7)

    if x, y, z, w can be compared with each other, then

    (xy)(zw) ( ( x z ) ( y w ) ) ( ( x w ) ( y z ) ) ;
  8. (8)

    αxβx=|αβ|x=(αβ)x, if xθ.

Lemma 2.3 [5]

If xy, then lub{x,y}, and glb{x,y} exist, xyyx, and θ(xy)(yx).

Lemma 2.4 [5]

If for any natural number n, x y n , and y n y (n), then x y .

Lemma 2.5 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relationdefined by the cone P. A:XX is comparative, then for x,yX, if xy [1], then

  1. (1)

    xyxyx+y,

  2. (2)

    xy=xyNxy,

  3. (3)

    lim x x 0 A(x)A( x 0 )=0 if and only if lim x x 0 A(x)A( x 0 )=θ.

Proof Result (1) is obvious; (2) follows from (1), Definition 2.2 in [1], Lemma 2.7 in [2]; (3) follows from (1) and (2). This completes the proof. □

Definition 2.6 Let X be a real ordered Banach space, and let F:X×XX be a mapping. The operator F:X×XX is said to be an ordered Lipschitz continuous with constants (μ,ν) if xy, uv, then F(u,x)F(v,y), and there exist constants μ,ν>0 such that

F(u,x)F(v,y)μ(uv)+ν(xy).

Definition 2.7 [2]

Let X be a real ordered Banach space, let B:XX be a mapping, and let I be an identity mapping on X. A mapping A:XX is said to be a B-restricted-accretive mapping if A, B and AB:xXA(x)B(x)X all are comparisons, and they are comparisons with each other, and there exist two constants 0< α 1 , α 2 1 such that for arbitrary x,yX,

( A ( x ) B ( x ) + I ( x ) ) ( A ( y ) B ( y ) + I ( y ) ) α 1 ( ( A ( x ) B ( x ) ) ( A ( y ) B ( y ) ) ) + α 2 ( x y )

holds, where I is an identity mapping on X.

Definition 2.8 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relation ≤ defined by the cone P. If X×X is a product Banach space with the normal and an ordered relation ≤, and the following conditions are satisfied:

  1. (1)

    (x,y)=max{x,y} for any (x,y)X×X;

  2. (2)

    ( x 1 , y 1 )( x 2 , y 2 ) if and only if x 1 x 2 , y 1 y 2 , and ( x 1 , y 1 )( x 2 , y 2 ) if and only if x 1 x 2 , y 1 y 2 in X;

  3. (3)
    ( x 1 , y 1 ) ( x 2 , y 2 ) = ( x 1 x 2 , y 1 y 2 ) , ( x 1 , y 1 ) ( x 2 , y 2 ) = ( x 1 x 2 , y 1 y 2 ) , ( x 1 , y 1 ) ( x 2 , y 2 ) = ( x 1 x 2 , y 1 y 2 ) .

Then X×X is called an ordered product Banach space.

Definition 2.9 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relation ≤ defined by the cone P. Let X×X be an ordered product Banach space. For a vector-valued mapping G =( G 1 , G 2 )(or  ( G 1 , G 2 ) T ):X×XX×X in X×X, if there exists a point ( x , y )X×X such that

G ( x , y ) =( G 1 , G 2 ) ( x , y ) = ( x , y ) ,

then ( x , y ) is called a fixed point of vector-valued mapping G in ordered product Banach space.

The following results are obvious.

Lemma 2.10 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relationdefined by the cone P. Let X×X be an ordered product Banach space. For sequences { x n } and { y n } in X, in X×X,

( x n , y n ) ( x , y ) if and only if x n x and y n y as n.
(2.1)

Lemma 2.11 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relationdefined by the cone P. Let X×X be an ordered product Banach space. Let G =( G 1 , G 2 )(or  ( G 1 , G 2 ) T ):X×XX×X be a vector-valued mapping in X×X if for any ( x i , y i )X×X(i=1,2), ( x 1 , y 1 )( x 2 , y 2 ), and there exist a constance 1>δ>0 such that

( G 1 , G 2 ) ( x 1 , y 1 ) ( G 1 , G 2 ) ( x 2 , y 2 ) δ ( x 1 , y 1 ) ( x 2 , y 2 ) ,
(2.2)

then ( G 1 , G 2 ) has a fixed point in X×X.

Proof This directly follows from Lemma 2.2, Lemma 2.5(2) and the contraction mapping principle. □

3 Approximation solution for GNM system (1.1)

In this section, we will change from the solution of system (1.1) to finding a fixed point for a vector-valued mapping, and by using the vector-valued mapping fixed point analysis method, show the convergence of the approximation sequences of the solution for system (1.1) in an ordered product Banach space.

Lemma 3.1 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relationdefined by the cone P, and let X×X be an ordered product Banach space. If g,f, B i :XX are ordered compressions, F i j :X×XX is order ( μ i j , ν i j )-Lipschitz continuous, and let g, f, B 1 , B 2 and F i j be comparison mappings with each other (where i,j=1,2). Then system (1.1) has a solution ( x , y ) if and only if there exist two ordered compressions B 1 and B 2 such that the vector-valued mapping G =( G 1 (x,y), G 2 (x,y)):X×XX×X,

G 1 ( x , y ) = ( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) and G 2 ( x , y ) = ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) ,
(3.1)

has the fixed point ( x , y ) in an ordered Banach space X×X.

Proof Let ( x , y ) be a fixed point of the vector-valued mapping (3.1), then, obviously, ( x , y ) is a solution of system (1.1).

On the other hand, choosing

B 1 (x)= { θ , if  θ F 11 ( f ( x ) , y ) + F 12 ( y , x ) u , ζ 1 x , otherwise

and

B 2 (y)= { θ , if  θ F 21 ( x , y ) F 22 ( x , g ( y ) ) v , ζ 2 y , otherwise ,

where 1> ζ 1 , ζ 2 >0, if ( x , y ) is a solution of system (1.1), then by using [1, 2],

( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) = x , ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) = y

hold. Therefore, ( x , y ) is a fixed point of the vector-valued mapping (3.1), where the mappings B 1 and B 2 are ordered compressions [2]. This completes the proof. □

Theorem 3.2 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relationdefined by the cone P, and let X×X be an ordered product Banach space. Let g and f be ordered compressions with respect to γ g and γ f , respectively; let B i :XX be an ordered compression mapping with ζ i , let F i j :X×XX be an ordered ( μ i j , ν i j )-Lipschitz continuous (i,j=1,2), and let g, f, B 1 , B 2 and F i j (i,j=1,2) be comparison mappings with each other. If F 11 + F 12 u is a B 1 -restricted-accretive mapping with ( α 1 , α 2 ), and F 21 F 22 v is a B 2 -restricted-accretive mapping with ( β 1 , β 2 ), and

N max { α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 , α 1 ( ν 11 + μ 12 ) , β 1 ( μ 21 μ 22 ) , ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 } < 1
(3.2)

holds, then for the general nonlinear mixed ordered variational inequality system (1.1), there exists a solution ( x , y ).

Proof Let X be a real ordered Banach space, and let X×X be an ordered product Banach space. Setting

G 1 ( x , y ) = ( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) , G 2 ( x , y ) = ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) .
(3.3)

Since F 11 + F 12 u is a B 1 -restricted-accretive mapping with ( α 11 , α 12 ), F 21 F 22 v is a B 2 -restricted-accretive mapping with ( β 11 , β 12 ), and F 11 and F 12 are ordered ( μ 11 , ν 11 )-Lipschitz continuous and ( μ 12 , ν 12 )-Lipschitz continuous, respectively, then for any given x i , y j X and x i y j (i,j=1,2), by Lemma 2.2(6), (7), Definition 2.7 and [1, 2], we can obtain the following inequalities:

θ G 1 ( x 1 , y 1 ) G 1 ( x 2 , y 2 ) = ( ( F 11 ( f ( x 1 ) , y 1 ) + F 12 ( y 1 , x 1 ) u ) B 1 ( x 1 ) + I ( x 1 ) ) ( ( F 11 ( f ( x 2 ) , y 2 ) + F 12 ( y 2 , x 2 ) u ) B 1 ( x 2 ) + I ( x 2 ) ) α 1 ( ( ( F 11 ( f ( x 1 ) , y 1 ) + F 12 ( y 1 , x 1 ) u ) B 1 ( x 1 ) ) ( ( F 11 ( f ( x 2 ) , y 2 ) + F 12 ( y 2 , x 2 ) ) u ) B 1 ( x 2 ) ) + α 2 ( x 1 x 2 ) α 11 ( ( ( F 11 ( f ( x 1 ) , y 1 ) + F 12 ( y 1 , x 1 ) u ) ( F 11 ( f ( x 2 ) , y 2 ) + F 12 ( y 2 , x 2 ) ) u ) ( B 1 ( x 1 ) B 1 ( x 2 ) ) ) + α 2 ( x 1 x 2 ) α 1 ( ( ( F 11 ( f ( x 1 ) , y 1 ) F 11 ( f ( x 2 ) , y 2 ) ) + ( ( F 12 ( y 1 , x 1 ) u ) ( F 12 ( y 2 , x 2 ) u ) ) ζ 1 ( x 1 x 2 ) ) ) + α 2 ( x 1 x 2 ) α 1 ( ( ( F 11 ( f ( x 1 ) , y 1 ) F 11 ( f ( x 2 ) , y 2 ) ) + ( F 12 ( y 1 , x 1 ) F 12 ( y 2 , x 2 ) ) ) ζ 1 ( x 1 x 2 ) ) + α 2 ( x 1 x 2 ) ( α 1 ( μ 11 γ f ( x 1 x 2 ) + ν 11 ( y 1 y 2 ) ) + α 1 ( μ 12 ( y 1 y 2 ) + ν 12 ( x 1 x 2 ) ) ) ζ 1 ( x 1 x 2 ) + α 2 ( x 1 x 2 ) ( α 1 ( ( μ 11 γ f + ν 12 ) + ζ 1 ) + α 2 ) ( x 1 x 2 ) + α 1 ( ν 11 + μ 12 ) ( y 1 y 2 )
(3.4)

and

θ G 2 ( x 1 , y 1 ) G 2 ( x 2 , y 2 ) = ( ( F 21 ( x 1 , y 1 ) F 22 ( x 1 , g ( y 1 ) ) v ) B 2 ( y 1 ) + I ( y 1 ) ) ( ( F 21 ( x 2 , y 2 ) F 22 ( x 2 , g ( y 2 ) ) v ) B 2 ( y 2 ) + I ( y 2 ) ) β 1 ( ( ( ( F 21 ( x 1 , y 1 ) F 21 ( x 2 , y 2 ) ) v ) B 2 ( y 1 ) ) ( ( F 22 ( x 1 , g ( y 1 ) ) F 22 ( x 2 , g ( y 2 ) ) ) v ) B 2 ( y 2 ) ) + β 2 ( y 1 y 2 ) β 1 ( ( ( ( F 21 ( x 1 , y 1 ) F 21 ( x 2 , y 2 ) ) ) ( F 22 ( x 1 , g ( y 1 ) ) F 22 ( x 2 , g ( y 2 ) ) ) ) ( B 2 ( y 1 ) B 2 ( y 2 ) ) ) + β 2 ( y 1 y 2 ) β 1 ( ( ( ( F 21 ( x 1 , y 1 ) F 21 ( x 2 , y 2 ) ) ) ( F 22 ( x 1 , g ( y 1 ) ) F 22 ( x 2 , g ( y 2 ) ) ) ) ζ 2 ( y 1 y 2 ) ) + β 2 ( y 1 y 2 ) β 1 ( ( ( μ 21 ( x 1 x 2 ) + ν 21 ( y 1 y 2 ) ) ( μ 22 ( x 1 x 2 ) + ν 22 γ g ( y 1 y 2 ) ) ) ζ 2 ( y 1 y 2 ) ) + β 2 ( y 1 y 2 ) β 1 ( ( ( μ 21 ( x 1 x 2 ) μ 22 ( x 1 x 2 ) ) + ( ν 21 ( y 1 y 2 ) ν 22 γ g ( y 1 y 2 ) ) ) ζ 2 ( y 1 y 2 ) ) + β 2 ( y 1 y 2 ) β 1 ( μ 21 μ 22 ) ( x 1 x 2 ) + ( ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) ( y 1 y 2 ) ;
(3.5)

and

( G 1 , G 2 )( x 1 , y 1 )( G 1 , G 2 )( x 2 , y 2 )Ψ( x 1 , y 1 )( x 2 , y 2 ),
(3.6)

where

Ψ= ( α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 α 1 ( ν 11 + μ 12 ) β 1 ( μ 21 μ 22 ) ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) .
(3.7)

Further, by [27] and Definition 2.2 in [1], we have

( G 1 , G 2 ) ( x 1 , y 1 ) ( G 1 , G 2 ) ( x 2 , y 2 ) NΨ ( x 1 , y 1 ) ( x 2 , y 2 ) ,
(3.8)

where

Ψ = max { α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 , α 1 ( ν 11 + μ 12 ) , β 1 ( μ 21 μ 22 ) , ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 } ,

and N is a normal constant of P.

It follows from (3.8) and the assumption condition (3.2) that 0<NΨ<1, and hence the vector-valued mapping

( G 1 , G 2 ) T = ( ( ( F 11 ( f , ) + F 12 ( , ) u ) B 1 + I ( ) , ( F 21 ( , ) F 22 ( , g ) ) v ) B 2 + I ( ) ) T

has a fixed point ( x , y ) for Lemma 2.11, in an ordered Banach space X×X, which is a solution for system (1.1) by Lemma 3.1. This completes the proof. □

Theorem 3.3 Let the assumption conditions in Theorem  3.2 and (3.2) hold, that is,

N max { α 1 ( μ 11 γ f + ν 12 ) + ζ 1 + α 2 , α 1 ( ν 11 + μ 12 ) , β 1 ( μ 21 μ 22 ) , ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 } < 1 .
(3.9)

Then the iterative sequence {( x n , y n )} generated by the following algorithm:

x n + 1 = ( 1 ρ ) x n + ρ ( ( F 11 ( f ( x n ) , y n ) + F 12 ( y n , x n ) ) B 1 ( x n ) + I ( x n ) ) , y n + 1 = ( 1 σ ) y n + σ ( ( ( F 21 ( x n , y n ) F 22 ( x n , g ( y n ) ) ) B 2 ( y n ) + I ( y n ) ) )
(3.10)

for any x 0 , y 0 X, x 0 y 0 , ( x 0 , y 0 )( x 1 , y 1 ) and 1>ρ,ϱ>0, converges strongly to ( x , y ), which is a solution of system (1.1).

Proof Let the assumption conditions in Theorem 3.2 hold. For any given x 0 , y 0 X and x 0 y 0 , ( x 0 , y 0 )( x 1 , y 1 ), setting

G 1 ( x , y ) = ( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) , G 2 ( x , y ) = ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) ,
(3.11)

then for any 1>ρ,σ>0, by algorithm (3.10), (3.4) and (3.5), we have

θ x n + 1 x n = [ ( 1 ρ ) x n + ρ G 1 ( x n , y n ) ] [ ( 1 ρ ) x n 1 + ρ G 1 ( x n 1 , y n 1 ) ] ( 1 ρ ) ( x n 1 x n ) + ρ ( G 1 ( x n , y n ) G 1 ( x n 1 , y n 1 ) ) ( 1 ρ ) ( x n 1 x n ) + ρ ( G 1 ( x n , y n ) G 1 ( x n 1 , y n 1 ) ) [ ( 1 ρ ) + ρ ( α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 ) ] ( x n 1 x n ) + ρ α 1 ( ν 11 + μ 12 ) ( y n 1 y n )
(3.12)

and

θ y n + 1 y n = [ ( 1 σ ) y n + σ G 2 ( x n , y n ) ] [ ( 1 σ ) y n 1 + σ G 2 ( x n 1 , y n 1 ) ] ( 1 σ ) ( y n 1 y n ) + σ ( G 2 ( x n , y n ) G 2 ( x n 1 , y n 1 ) ) ( 1 σ ) ( y n 1 y n ) + σ ( β 1 ( μ 21 μ 22 ) ( x n 1 x n ) + ( ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) ( y n 1 y n ) ) [ ( 1 σ ) + σ ( ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) ] ( y n 1 y n ) + σ β 1 ( μ 21 μ 22 ) ( x n 1 x n ) σ β 1 ( μ 21 μ 22 ) ( x n 1 x n ) + [ ( 1 σ ) + σ ( ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) ] ( y n 1 y n ) ,
(3.13)

combining (3.12) and (3.13), and by Definition 2.8, we have

( x n + 1 , y n + 1 )( x n , y n )Σ( x n , y n )( x n 1 , y n 1 ),

where

Σ = ( 1 ρ 0 0 1 σ ) + ( ρ ( α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 ) ρ α 1 ( ν 11 + μ 12 ) σ β 1 ( μ 21 μ 22 ) σ ( ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) ) .

Since (3.2) holds, that is,

N max { α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 , α 1 ( ν 11 + μ 12 ) , β 1 ( μ 21 μ 22 ) , ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 } < 1 ,

the inequality NΣ<1 is true. It follows that ( x n , y n ) T ( x , y ) T strongly from Lemma 2.11.

Since g, f, B 1 , B 2 and F i j (i,j=1,2) are ordered compressions, and they are comparisons of each other, so that

x = ( 1 ρ ) x + ρ ( ( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) ) , y = ( 1 σ ) y + σ ( ( ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) ) )

holds. Therefore, ( x , y ) is a fixed point of the vector-valued mapping

( ( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) , ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) ) .

By using Lemma 3.1, ( x , y ) is a solution of system (1.1). This completes the proof. □

Remark 3.4 For a suitable choice of the mappings g, f, B 1 , B 2 and F i j (i,j=1,2), we can obtain several known results [1] and [2] as special cases of Theorem 3.2, 3.3.