1 Introduction

Fractional integrals and derivatives arise in many engineering and scientific disciplines as the mathematical modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of a complex medium. In particular, the subject of fractional calculus has become a rapidly growing area and has found applications in diverse fields ranging from physical sciences and engineering to biological sciences and economics [18].

Fractional Hermite-Hadamard inequalities involving all kinds of fractional integrals have attracted by many researchers. Many authors paid attention to the study of fractional Hermite-Hadamard inequalities according to the first-order integral equalities and convex functions of different classes. For instance, the readers can refer to [911] for convex functions and [12] for nondecreasing functions, [1315] for m-convex functions and [16] for (s,m)-convex functions, [17, 18] for functions satisfying s-e-condition, [19] for (α,m)-logarithmically convex functions and the references therein.

Very recently, the authors [20] introduced the new concept of geometric-arithmetically s-convex functions and established some interesting Hermite-Hadamard type inequalities for integer integrals of such functions. However, to our knowledge, fractional Hermite-Hadamard inequalities for geometric-arithmetically s-convex functions have not been reported. Motivated by [9, 10, 13, 20], we study Riemann-Liouville fractional Hermite-Hadamard type inequalities for geometric-arithmetically s-convex functions by means of first-order fractional integral equalities.

2 Preliminaries

In this section, we introduce notations, definitions and preliminary facts.

Definition 2.1 (see [3]) Let fL[a,b]. The symbols J a + α f and J b α f denote the left-sided and right-sided Riemann-Liouville fractional integrals of the order α R + and are defined by

( J a + α f ) (x)= 1 Γ ( α ) a x ( x t ) α 1 f(t)dt(0a<xb)

and

( J b α f ) (x)= 1 Γ ( α ) x b ( t x ) α 1 f(t)dt(0ax<b),

respectively, here Γ() is the gamma function.

Definition 2.2 (see [20])

Let f:I R + R + and s(0,1]. A function f(x) is said to be geometric-arithmetically s-convex on I if for every x,yI and t[0,1], we have

f ( x t y 1 t ) t s ( f ( x ) ) + ( 1 t ) s f(y).

Definition 2.3 (see [21])

The incomplete beta function is defined as follows:

B x (a,b)= 0 x t a 1 ( 1 t ) b 1 dt,

where x[0,1], a,b>0.

The following inequality will be used in the sequel.

Lemma 2.4 (see [19])

For t[0,1], we have

( 1 t ) n 2 1 n t n for  n [ 0 , 1 ] , ( 1 t ) n 2 1 n t n for  n [ 1 , ) .

The following elementary inequality was used in the proof directly in [20]. Here, we revisit this inequality from the point of our view and give a proof.

Lemma 2.5 For t[0,1], x,y>0, we have

tx+(1t)y y 1 t x t .

Proof If xy, then we consider the function f(z)=tz+1t z t , z1. If yx, then we consider the function g(z)=t+(1t)z z 1 t , z1. Clearly f() and g() are increasing functions for all z1, then f(z)f(1)=0 and g(z)g(1)=0. So, f( x y )0 and g( y x )0, i.e., the statement holds. □

We collect the following first-order fractional integrals identities.

Lemma 2.6 ([[9], Lemma 2])

Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If f L[a,b], then the following equality for fractional integrals holds:

f ( a ) + f ( b ) 2 Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] = b a 2 0 1 [ ( 1 t ) α t α ] f ( t a + ( 1 t ) b ) d t .

Lemma 2.7 ([[10], Lemma 2.1])

Let f:[a,b]R be a differentiable mapping on (a,b). If f L[a,b], then the following equality for fractional integrals holds:

Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) = b a 2 0 1 [ h ( t ) ( 1 t ) α + t α ] f ( t a + ( 1 t ) b ) d t ,

where

h(t)={ 1 , 0 < t < 1 2 , 1 , 1 2 < t < 1 .

Lemma 2.8 ([[13], Lemma 2])

Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If f L[a,b], then the following equality for fractional integrals holds:

( x a ) α + ( b x ) α b a f ( x ) Γ ( α + 1 ) b a [ J x α f ( a ) + J x + α f ( b ) ] = ( x a ) α + 1 b a 0 1 t α f ( t x + ( 1 t ) a ) d t ( b x ) α + 1 b a 0 1 t α f ( t x + ( 1 t ) b ) d t .

3 Main results

In this section, we use Lemmas 2.6, 2.7 and 2.8 via geometric-arithmetically s-convex functions to derive the main results in this paper.

3.1 The first results

By using Lemma 2.6, we can obtain the main results in this section.

Theorem 3.1 Let f:[0,b]R be a differentiable mapping. If | f | is measurable and | f | is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<b, then the following inequality for fractional integrals holds:

| f ( a ) + f ( b ) 2 Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] | ( b a ) ( 2 α + s | f ( b ) | | f ( a ) | | f ( b ) | ) ( α + s + 1 ) 2 α + s + 1 + ( b a ) | f ( a ) | [ 0.5 B ( s + 1 , α + 1 ) B 0.5 ( α + 1 , s + 1 ) ] + ( b a ) | f ( b ) | [ B 0.5 ( s + 1 , α + 1 ) 0.5 B ( s + 1 , α + 1 ) ] ,

where

B(s+1,α+1)= 0 1 t s ( 1 t ) α dt,

and

B 0.5 (s+1,α+1)= 0 0.5 t s ( 1 t ) α dt.

Proof By using Definition 2.2, Definition 2.3, Lemma 2.5 and Lemma 2.6, we have

| f ( a ) + f ( b ) 2 Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] | b a 2 0 1 | ( 1 t ) α t α | | f ( t a + ( 1 t ) b ) | d t b a 2 1 2 1 ( t α ( 1 t ) α ) | f ( t a + ( 1 t ) b ) | d t + b a 2 0 1 2 ( ( 1 t ) α t α ) | f ( t a + ( 1 t ) b ) | d t b a 2 1 2 1 ( t α ( 1 t ) α ) | f ( a t b 1 t ) | d t + b a 2 0 1 2 ( ( 1 t ) α t α ) | f ( a t b 1 t ) | d t b a 2 1 2 1 ( t α ( 1 t ) α ) [ t s | f ( a ) | + ( 1 t ) s | f ( b ) | ] d t + b a 2 0 1 2 ( ( 1 t ) α t α ) [ t s | f ( a ) | + ( 1 t ) s | f ( b ) | ] d t ( b a ) | f ( a ) | 2 1 2 1 t α + s d t ( b a ) | f ( a ) | 2 1 2 1 t s ( 1 t ) α d t ( b a ) | f ( b ) | 2 1 2 1 ( 1 t ) α + s d t + ( b a ) | f ( b ) | 2 1 2 1 t α ( 1 t ) s d t ( b a ) | f ( a ) | 2 0 1 2 t α + s d t + ( b a ) | f ( a ) | 2 0 1 2 t s ( 1 t ) α d t + ( b a ) | f ( b ) | 2 0 1 2 ( 1 t ) α + s d t ( b a ) | f ( b ) | 2 0 1 2 t α ( 1 t ) s d t ( b a ) | f ( a ) | 1 2 1 t α + s d t ( b a ) | f ( a ) | 1 2 1 t s ( 1 t ) α d t ( b a ) | f ( b ) | 1 2 1 ( 1 t ) α + s d t + ( b a ) | f ( b ) | 1 2 1 t α ( 1 t ) s d t ( b a ) | f ( a ) | 0 1 t α + s d t + ( b a ) | f ( a ) | 2 0 1 t s ( 1 t ) α d t + ( b a ) | f ( b ) | 2 0 1 ( 1 t ) α + s d t ( b a ) | f ( b ) | 2 0 1 t α ( 1 t ) s d t ( b a ) | f ( a ) | 1 ( α + s + 1 ) 2 α + s + 1 + ( b a ) | f ( a ) | 1 α + s + 1 ( b a ) | f ( a ) | B 0.5 ( α + 1 , s + 1 ) ( b a ) | f ( b ) | 1 ( α + s + 1 ) 2 α + s + 1 + ( b a ) | f ( b ) | B 0.5 ( s + 1 , α + 1 ) ( b a ) | f ( a ) | 1 α + s + 1 + ( b a ) | f ( a ) | 2 B ( s + 1 , α + 1 ) + ( b a ) | f ( b ) | 2 1 α + s + 1 ( b a ) | f ( b ) | 2 B ( s + 1 , α + 1 ) ( b a ) ( 2 α + s | f ( b ) | | f ( a ) | | f ( b ) | ) ( α + s + 1 ) 2 α + s + 1 + ( b a ) | f ( a ) | [ 0.5 B ( s + 1 , α + 1 ) B 0.5 ( α + 1 , s + 1 ) ] + ( b a ) | f ( b ) | [ B 0.5 ( s + 1 , α + 1 ) 0.5 B ( s + 1 , α + 1 ) ] .

The proof is done. □

Theorem 3.2 Let f:[0,b]R be a differentiable mapping and 1<q<. If | f | q is measurable and | f | q is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<b, then the following inequality for fractional integrals holds:

| f ( a ) + f ( b ) 2 Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] | b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 2 2 1 p α p α + 1 ) 1 p ,

where 1 p + 1 q =1.

Proof By using Definition 2.2, Lemma 2.5, Hölder’s inequality and Lemma 2.6, we have

| f ( a ) + f ( b ) 2 Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] | b a 2 0 1 | ( 1 t ) α t α | | f ( t a + ( 1 t ) b ) | d t b a 2 ( 0 1 | ( 1 t ) α t α | p d t ) 1 p ( 0 1 | f ( t a + ( 1 t ) b ) | q d t ) 1 q b a 2 ( 0 1 | ( 1 t ) α t α | p d t ) 1 p ( 0 1 | f ( a t b 1 t ) | q d t ) 1 q b a 2 ( 0 1 | ( 1 t ) α t α | p d t ) 1 p ( 0 1 [ t s | f ( a ) | q + ( 1 t ) s | f ( b ) | q ] d t ) 1 q b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 0 1 | ( 1 t ) α t α | p d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 ( t α ( 1 t ) α ) p d t + 0 1 2 ( ( 1 t ) α t α ) p d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 ( t p α ( 1 t ) p α ) d t + 0 1 2 ( ( 1 t ) p α t p α ) d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 2 2 1 p α p α + 1 ) 1 p .

The proof is done. □

3.2 The second results

By using Lemma 2.7, we can obtain the main results in this section.

Theorem 3.3 Let f:[0,b]R be a differentiable mapping. If | f | is measurable and | f | is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<b, then the following inequality for fractional integrals holds:

Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) 0.5 ( b a ) ( | f ( a ) | + | f ( b ) | ) × ( B 0.5 ( α + 1 , s + 1 ) B 0.5 ( s + 1 , α + 1 ) + 2 α 1 α + s + 1 + 1 s + 1 ) .

Proof By using Definition 2.2, Lemma 2.5 and Lemma 2.7, we have

| Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) | b a 2 0 1 | h ( t ) ( 1 t ) α + t α | | f ( t a + ( 1 t ) b ) | d t b a 2 1 2 1 | 1 ( 1 t ) α + t α | | f ( t a + ( 1 t ) b ) | d t + b a 2 0 1 2 | 1 ( 1 t ) α + t α | | f ( t a + ( 1 t ) b ) | d t b a 2 1 2 1 ( 1 + ( 1 t ) α t α ) | f ( t a + ( 1 t ) b ) | d t + b a 2 0 1 2 ( 1 ( 1 t ) α + t α ) | f ( t a + ( 1 t ) b ) | d t b a 2 1 2 1 ( 1 + ( 1 t ) α t α ) | f ( a t b 1 t ) | d t + b a 2 0 1 2 ( 1 ( 1 t ) α + t α ) | f ( a t b 1 t ) | d t b a 2 1 2 1 ( 1 + ( 1 t ) α t α ) [ t s | f ( a ) | + ( 1 t ) s | f ( b ) | ] d t + b a 2 0 1 2 ( 1 ( 1 t ) α + t α ) [ t s | f ( a ) | + ( 1 t ) s | f ( b ) | ] d t ( b a ) | f ( a ) | 2 1 2 1 t α + s d t + ( b a ) | f ( a ) | 2 1 2 1 t s d t + ( b a ) | f ( a ) | 2 1 2 1 t s ( 1 t ) α d t + ( b a ) | f ( b ) | 2 1 2 1 ( 1 t ) α + s d t ( b a ) | f ( b ) | 2 1 2 1 t α ( 1 t ) s d t + ( b a ) | f ( b ) | 2 1 2 1 ( 1 t ) s d t + ( b a ) | f ( a ) | 2 0 1 2 t α + s d t ( b a ) | f ( a ) | 2 0 1 2 t s ( 1 t ) α d t + ( b a ) | f ( a ) | 2 0 1 2 t s d t ( b a ) | f ( b ) | 2 0 1 2 ( 1 t ) α + s d t + ( b a ) | f ( b ) | 2 0 1 2 t α ( 1 t ) s d t + ( b a ) | f ( b ) | 2 0 1 2 ( 1 t ) s d t ( b a ) | f ( a ) | 2 1 2 α s 1 α + s + 1 + ( b a ) | f ( a ) | 2 1 2 s 1 s + 1 + ( b a ) | f ( a ) | 2 B 0.5 ( α + 1 , s + 1 ) + ( b a ) | f ( b ) | 2 2 α s 1 α + s + 1 ( b a ) | f ( b ) | 2 B 0.5 ( s + 1 , α + 1 ) + ( b a ) | f ( b ) | 2 2 s 1 s + 1 + ( b a ) | f ( a ) | 2 2 α s 1 α + s + 1 ( b a ) | f ( a ) | 2 B 0.5 ( s + 1 , α + 1 ) + ( b a ) | f ( a ) | 2 2 s 1 s + 1 ( b a ) | f ( b ) | 2 1 2 α s 1 α + s + 1 + ( b a ) | f ( b ) | 2 1 2 s 1 s + 1 + ( b a ) | f ( b ) | 2 B 0.5 ( α + 1 , s + 1 ) ( b a ) | f ( a ) | 2 2 α s 1 α + s + 1 + ( b a ) | f ( a ) | 2 [ B 0.5 ( α + 1 , s + 1 ) B 0.5 ( s + 1 , α + 1 ) ] + ( b a ) | f ( a ) | 2 ( s + 1 ) + ( b a ) | f ( b ) | 2 2 α s 1 α + s + 1 + ( b a ) | f ( b ) | 2 [ B 0.5 ( α + 1 , s + 1 ) B 0.5 ( s + 1 , α + 1 ) ] + ( b a ) | f ( b ) | 2 ( s + 1 ) 0.5 ( b a ) ( | f ( a ) | + | f ( b ) | ) × ( B 0.5 ( α + 1 , s + 1 ) B 0.5 ( s + 1 , α + 1 ) + 2 α 1 α + s + 1 + 1 s + 1 ) .

The proof is done. □

Theorem 3.4 Let f:[0,b]R be a differentiable mapping and 1<q<. If | f | q is measurable and | f | q is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<b, then the following inequality for fractional integrals holds:

| Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) | max { b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( ( 1 + 2 1 α ) p 2 2 p ( 1 2 p α ) ( p α + 1 ) ) 1 p , ( b a ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 2 p 1 2 p ( 1 2 p α 1 ) p α + 1 ) 1 p } ,

where 1 p + 1 q =1.

Proof To achieve our aim, we divide our proof into two cases.

Case 1: α(0,1). By using Definition 2.2, Lemma 2.4, Lemma 2.5, Hölder’s inequality and Lemma 2.7, we have

| Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) | b a 2 0 1 | h ( t ) ( 1 t ) α + t α | | f ( t a + ( 1 t ) b ) | d t b a 2 ( 0 1 | h ( t ) ( 1 t ) α + t α | p d t ) 1 p ( 0 1 | f ( t a + ( 1 t ) b ) | q d t ) 1 q b a 2 ( 0 1 | h ( t ) ( 1 t ) α + t α | p d t ) 1 p ( 0 1 | f ( a t b 1 t ) | q d t ) 1 q b a 2 ( 0 1 | h ( t ) ( 1 t ) α + t α | p d t ) 1 p ( 0 1 [ t s | f ( a ) | q + ( 1 t ) s | f ( b ) | q ] d t ) 1 q b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 0 1 | h ( t ) ( 1 t ) α + t α | p d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 ( 1 t α + ( 1 t ) α ) p d t + 0 1 2 ( 1 ( 1 t ) α + t α ) p d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 [ 1 t α + 2 1 α t α ] p d t + 0 1 2 [ ( 1 + t α ) ( 1 t α ) ] p d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 [ ( 1 + 2 1 α ) p 2 p t p α ] d t + 0 1 2 2 p t p α d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( ( 1 + 2 1 α ) p 2 2 p ( 1 2 p α ) ( p α + 1 ) ) 1 p .

Case 2: α[1,). By using Definition 2.2, Lemma 2.4 and Lemma 2.7, we have

| Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) | b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 ( 1 t α + ( 1 t ) α ) p d t + 0 1 2 ( 1 ( 1 t ) α + t α ) p d t ) 1 p ( b a ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 ( 1 t α + 1 t α ) p d t ) 1 p ( b a ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 2 p ( 1 t p α ) d t ) 1 p ( b a ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 2 p 1 2 p ( 1 2 p α 1 ) p α + 1 ) 1 p .

The proof is done. □

3.3 The third results

By using Lemma 2.8, we can obtain the main results in this section.

Theorem 3.5 Let f:[0,b]R be a differentiable mapping. If | f | is measurable and | f | is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<x<b, then the following inequality for fractional integrals holds:

| ( x a ) α + ( b x ) α b a f ( x ) Γ ( α + 1 ) b a [ J x α f ( a ) + J x + α f ( b ) ] | | ( x a ) α + 1 ( b x ) α + 1 | b a [ | f ( a ) | α + s + 1 + | f ( b ) | B ( α + 1 , s + 1 ) ] ,

where

B(s+1,α+1)= 0 1 t s ( 1 t ) α dt.

Proof By using Definition 2.2, Lemma 2.5 and Lemma 2.8, we have

| ( x a ) α + ( b x ) α b a f ( x ) Γ ( α + 1 ) b a [ J x α f ( a ) + J x + α f ( b ) ] | | ( x a ) α + 1 ( b x ) α + 1 | b a 0 1 t α | f ( t x + ( 1 t ) a ) | d t | ( x a ) α + 1 ( b x ) α + 1 | b a 0 1 t α | f ( x t a 1 t ) | d t | ( x a ) α + 1 ( b x ) α + 1 | b a 0 1 t α [ t s | f ( a ) | + ( 1 t ) s | f ( b ) | ] d t | ( x a ) α + 1 ( b x ) α + 1 | b a 0 1 [ t α + s | f ( a ) | + t α ( 1 t ) s | f ( b ) | ] d t | ( x a ) α + 1 ( b x ) α + 1 | b a [ | f ( a ) | α + s + 1 + | f ( b ) | B ( α + 1 , s + 1 ) ] .

The proof is done. □

Theorem 3.6 Let f:[0,b]R be a differentiable mapping and 1<q<. If | f | q is measurable and | f | q is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<b, then the following inequality for fractional integrals holds:

| ( x a ) α + ( b x ) α b a f ( x ) Γ ( α + 1 ) b a [ J x α f ( a ) + J x + α f ( b ) ] | b a 2 ( p α + 1 ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q .

Proof By using Definition 2.2, Lemma 2.5, Hölder’s inequality and Lemma 2.8, we have

| ( x a ) α + ( b x ) α b a f ( x ) Γ ( α + 1 ) b a [ J x α f ( a ) + J x + α f ( b ) ] | | ( x a ) α + 1 ( b x ) α + 1 | b a 0 1 t α | f ( t x + ( 1 t ) a ) | d t b a 2 ( 0 1 t p α d t ) 1 p ( 0 1 | f ( t a + ( 1 t ) b ) | q d t ) 1 q b a 2 ( p α + 1 ) ( 0 1 | f ( t a + ( 1 t ) b ) | q d t ) 1 q b a 2 ( p α + 1 ) ( 0 1 | f ( a t b 1 t ) | q d t ) 1 q b a 2 ( p α + 1 ) ( 0 1 [ t s | f ( a ) | q + ( 1 t ) s | f ( b ) | q ] d t ) 1 q b a 2 ( p α + 1 ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ,

where 1 p + 1 q =1. The proof is done. □

4 Applications to special means

Consider the following special means (see Pearce and Pec̆arić [22]) for arbitrary real numbers α, β, αβ as follows:

  1. (i)

    H(α,β)= 2 1 α + 1 β , α,βR{0};

  2. (ii)

    A(α,β)= α + β 2 , α,βR;

  3. (iii)

    L(α,β)= β α ln | β | ln | α | , |α||β|, αβ0;

  4. (iv)

    L n (α,β)= [ β n + 1 α n + 1 ( n + 1 ) ( β α ) ] 1 n , nZ{1,0}, α,βR, αβ.

Next, we apply the obtained results to give some applications to special means of real numbers.

Theorem 4.1 For some s(0,1], nZ{1,0}, 0a<b, the following inequality for fractional integrals holds:

|A ( a n , b n ) L n n ( a n , b n ) | n ( b a ) 2 ( a ( n 1 ) q + b ( n 1 ) q s + 1 ) 1 q ( 2 2 1 p p + 1 ) 1 p ,

where

1 p + 1 q =1,1<q<.

Proof Applying Theorem 3.2 for f(x)= x n , α=1, one can obtain the result immediately. □

Theorem 4.2 For some s(0,1], nZ{1,0}, 0a<b, the following inequality for fractional integrals holds:

| L n n ( a n , b n ) A n ( a , b ) | ( b a ) ( a ( n 1 ) q + b ( n 1 ) q s + 1 ) 1 q max { ( 2 p 2 2 p 1 0.5 p + 1 ) 1 p , ( 2 p 1 2 p 0.5 p + 1 ) 1 p } ,

where

1 p + 1 q =1,1<q<.

Proof Applying Theorem 3.4 for f(x)= x n , α=1, one can obtain the result immediately. □

Theorem 4.3 For some s(0,1], nZ{1,0}, 1<q<, 0a<x<b, the following inequality for fractional integrals holds:

| L n n ( a n , b n ) x n | b a 2 ( p + 1 ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q .

Proof Applying Theorem 3.6 for f(x)= x n , α=1, one can obtain the result immediately. □

Theorem 4.4 For some s(0,1], 0a<b, the following inequality for fractional integrals holds:

| 1 H ( a , b ) 1 L ( a , b ) | b a 2 ( a 2 q + b 2 q ( s + 1 ) a 2 q b 2 q ) 1 q ( 2 2 1 p p + 1 ) 1 p ,

where

1 p + 1 q =1,1<q<.

Proof Applying Theorem 3.2 for f(x)= x 1 , α=1, one can obtain the result immediately. □

Theorem 4.5 For some s(0,1], 0a<b, the following inequality for fractional integrals holds:

| 1 H ( a , b ) 1 A ( a , b ) | ( b a ) ( a 2 q + b 2 q ( s + 1 ) a 2 q b 2 q ) 1 q max { ( ( 1 + 2 1 α ) p 4 2 p 1 ( 1 2 p α ) ( p α + 1 ) ) 1 p , ( 2 p 1 2 p ( 1 2 p α 1 ) p α + 1 ) 1 p } ,

where

1 p + 1 q =1,1<q<.

Proof Applying Theorem 3.4 for f(x)= x 1 , α=1, one can obtain the result immediately. □

Theorem 4.6 For some s(0,1], 0a<x<b, the following inequality for fractional integrals holds:

| 1 H ( a , b ) 1 x | b a 2 ( p + 1 ) ( a 2 q + b 2 q ( s + 1 ) a 2 q b 2 q ) 1 q ,

where

1 p + 1 q =1,1<q<.

Proof Applying Theorem 3.6 for f(x)= x 1 , α=1, one can obtain the result immediately. □