1 Introduction

Let Ω L s ( S n 1 ) be homogeneous of degree zero on R n , where S n 1 denotes the unit sphere of R n and s>1. We define s =s/(s1) for any s>1. Suppose that T Ω represents a sublinear operator, which satisfies that for any f L 1 ( R n ) with compact support and xsuppf,

| T Ω f ( x ) | C R n | Ω ( x y ) | | x y | n | f ( y ) | dy,
(1.1)

where C>0 is an absolute constant. Similarly, for any 0<α<n, we assume that T Ω , α represents a sublinear operator, which satisfies that

| T Ω , α f ( x ) | C R n | Ω ( x y ) | | x y | n α | f ( y ) | dy
(1.2)

for any f L 1 ( R n ) with compact support and xsuppf.

Let T be a linear operator. For a locally integrable function b on R n , we define the commutator [T,b] by

[T,b]f(x)=b(x)Tf(x)T(bf)(x)
(1.3)

for any suitable function f.

To study the local behavior of solutions to second-order elliptic partial differential equations, Morrey [1] introduced the classical Morrey spaces L p , λ ( R n ). The readers can find more details in [2].

Let 1p< and λ0. B( x 0 ,t) denotes a ball centered at x 0 of radius t. Morrey spaces L p , λ ( R n ) are defined by

L p , λ ( R n ) = { f L loc p ( R n ) : f L p , λ ( R n ) < } ,

where

f L p , λ ( R n ) = sup x 0 R n , t > 0 ( 1 t λ B ( x 0 , t ) | f ( x ) | p d x ) 1 p .

When 1p<, L p , 0 ( R n )= L p ( R n ) and L p , n ( R n )= L ( R n ); when λ>n, L p , λ ( R n )={0}.

Many authors have studied the mapping properties of many operators on Morrey spaces; see [35] and [6]. Alvarez et al. [7], in order to study the relationship between central BMO spaces and Morrey spaces, introduced λ-central bounded mean oscillation spaces and central Morrey spaces.

Let λ< 1 n and 1<p<. A function f L loc p ( R n ) belongs to the λ-central bounded mean oscillation spaces CBMO p , λ ( R n ) if

f CBMO p , λ = sup r > 0 ( 1 | B ( 0 , r ) | 1 + λ p B ( 0 , r ) | f ( x ) f B ( 0 , r ) | p ) 1 p <,

where f B ( 0 , r ) = 1 | B ( 0 , r ) | B ( 0 , r ) f(y)dy. If two functions which differ by a constant are regarded as functions in the spaces CBMO p , λ ( R n ), then CBMO p , λ ( R n ) spaces become Banach spaces. CBMO p , λ ( R n ) spaces become the spaces of constants when λ< 1 p and they coincide with L p ( R n ) modulo constants when λ= 1 p .

Let λR and 1<p<. The central Morrey spaces B ˙ p , λ ( R n ) are defined by

f B ˙ p , λ = sup r > 0 ( 1 | B ( 0 , r ) | 1 + λ p B ( 0 , r ) | f ( x ) | p ) 1 p <.

It follows that B ˙ p , λ ( R n ) spaces are Banach spaces continuously included in CBMO p , λ ( R n ) spaces. B ˙ p , λ ( R n ) spaces reduce to {0} when λ< 1 p , and it is true that B ˙ p , 1 p ( R n )= L p ( R n ), B ˙ p , 0 ( R n )= B ˙ p ( R n ).

Recently, Guliyev [8] introduced the generalized Morrey spaces L p , φ ( R n ), where φ(x,r) is a positive measurable function on R n ×(0,) and 1p<. For all functions f L loc p ( R n ), the generalized Morrey spaces L p , φ ( R n ) are defined by

f L p , φ ( R n ) = sup x R n , r > 0 φ ( x , r ) 1 | B ( x , r ) | 1 p f L p ( B ( x , r ) ) <.

Obviously, if φ(x,r)= r λ n p , L p , λ ( R n )= L p , φ ( R n ).

When Ω1, Guliyev obtained the sufficient condition on φ 1 and φ 2

r ess inf t < τ < φ 1 ( τ ) τ n p t n p + 1 dtC φ 2 (r)

for the boundedness of T Ω satisfying (1.1) from L p , φ 1 ( R n ) to L p , φ 2 ( R n ) in [9] and gave the condition on the pair of ( φ 1 , φ 2 )

r ess inf t < τ < φ 1 ( τ ) τ n p t n q + 1 dtC φ 2 (r)

for the boundedness of T Ω , α satisfying (1.2) from L p , φ 1 ( R n ) to L q , φ 2 ( R n ) in [10], where 1 q = 1 p α n .

Inspired by the above, we consider the boundedness of sublinear operators on the following generalized central Morrey spaces and give the λ-central bounded mean oscillation estimates for linear operator commutators.

Definition 1.1 Let φ(r) be a positive measurable function on R + and 1<p<. We denote by B ˙ p , φ ( R n ) the generalized central Morrey spaces, the spaces of all f L loc p ( R n ) with finite quasinorm

f B ˙ p , φ ( R n ) = sup r > 0 φ ( r ) 1 | B ( 0 , r ) | 1 p f L p ( B ( 0 , r ) ) .

We can recover the spaces B ˙ p , λ ( R n ) under the choice φ(r)= r n λ .

Recall that in 1994 the doctoral thesis [11] by Guliyev (see also [1215]) introduced the local Morrey-type space L M p θ , ω given by

f L M p θ , ω = ω ( r ) f L p ( B ( 0 , r ) ) L θ ( 0 , ) <,

where ω is a positive measurable function defined on (0,). The main purpose of [11] (also of [1215]) is to give some sufficient conditions for the boundedness of fractional integral operators and singular integral operators defined on homogeneous Lie groups in the local Morrey-type space L M p θ , ω . In a series of papers by Burenkov, H Guliyev and V Guliyev, etc. (see [1621]), some necessary and sufficient conditions for the boundedness of fractional maximal operators, fractional integral operators and singular integral operators in local Morrey-type spaces L M p θ , ω were given.

Particularly, if θ=, L M p θ , ω =L M p , ω , then the generalized central Morrey spaces B ˙ p , φ ( R n ) are the same spaces as the local Morrey spaces L M p , ω with ω(r)=φ ( r ) 1 r n p .

The following statements were proved in [11] (see also [14]).

Theorem A Let 1<p< and ( φ 1 , φ 2 ) satisfy the condition

r φ 1 (t) d t t C φ 2 (r),

where C does not depend on r. Then the Calderón-Zygmund operator T is bounded from B ˙ p , φ 1 to B ˙ p , φ 2 .

Theorem B Let 1<p<, 0<α< n p , 1 q = 1 p α n and ( φ 1 , φ 2 ) satisfy the condition

r t α φ 1 (t) d t t C φ 2 (r),

where C does not depend on r. Then the Riesz potential I α is bounded from B ˙ p , φ 1 to B ˙ q , φ 2 .

From Lemmas 4.4 and 5.3 in [9] we get the following for the generalized central (local) Morrey spaces B ˙ p , φ .

Theorem C Let 1<p<, T be a sublinear operator satisfying that for any f L 1 ( R n ) with compact support and xsuppf,

| T f ( x ) | C R n | f ( y ) | | x y | n dy,

and bounded on f L p ( R n ). Let also the pair ( φ 1 , φ 2 ) satisfy the condition

r ess inf t < τ < φ 1 ( τ ) τ n p t n p + 1 dtC φ 2 (r),

where C does not depend on r. Then the operator T is bounded from B ˙ p , φ 1 to B ˙ p , φ 2 .

Theorem D Let 1<p<, 0<α< n p , 1 q = 1 p α n , T α be a sublinear operator satisfying that for any f L 1 ( R n ) with compact support and xsuppf,

| T α f ( x ) | C R n | f ( y ) | | x y | n α dy,

and bounded from f L p ( R n ) to f L q ( R n ). Let also the pair ( φ 1 , φ 2 ) satisfy the condition

r ess inf t < τ < φ 1 ( τ ) τ n p t n q + 1 dtC φ 2 (r),

where C does not depend on r. Then the operator T α is bounded from B ˙ p , φ 1 to B ˙ q , φ 2 .

2 Sublinear operator with rough kernel

Theorem E Let ω be a positive weight function on (0,). The inequality

ess sup t > 0 ν 2 (t) H ω g(t)cess sup t > 0 ν 1 (t)g(t)

holds for all non-negative and non-increasing g on (0,) if and only if

A:= sup t > 0 ν 2 ( t ) t 0 t ω ( r ) d r ess sup 0 < τ < r ν 1 ( τ ) <,

and cA, where the H ω is the weighted Hardy operator

H ω g(t):= 1 t 0 t g(r)ω(r)dr,0<t<.

Note that Theorem E can be proved analogously to Theorem 1 in [22]; particularly, when ω1, it was proved in [23].

In this section we are going to discuss the boundedness of T Ω and T Ω , α on generalized central Morrey spaces.

Lemma 2.1 Let 1<p<, T Ω be a sublinear operator and satisfy (1.1) with Ω L s ( S n 1 ).

When s p and T Ω is bounded on L p ( R n ) for 1<p<, then the inequality

T Ω f L p ( B ( 0 , r ) ) C r n p 2 r t n p 1 f L p ( B ( 0 , t ) ) dt

holds for any ball B(0,r) and for all f L loc p ( R n ); or p<s and T Ω is bounded on L p ( R n ) for 1<p<, then the inequality

T Ω f L p ( B ( 0 , r ) ) C r n p n s 2 r t n p + n s 1 f L p ( B ( 0 , t ) ) dt

holds for any ball B(0,r) and for all f L loc p ( R n ).

Proof Let 1<p<. For any r>0, set B=B(0,r) and 2B=B(0,2r). We write

f(x)=f(x) χ 2 B (x)+f(x) χ ( 2 B ) c (x):= f 1 (x)+ f 2 (x)

and have

T Ω f L p ( B ) T Ω f 1 L p ( B ) + T Ω f 2 L p ( B ) .

Since T Ω f 1 is bounded on L p ( R n ), it follows that

T Ω f 1 L p ( B ) T Ω f 1 L p ( R n ) C f 1 L p ( R n ) =C f L p ( 2 B ) ,

where the constant C>0 is independent of f.

It is known that xB, y ( 2 B ) c , which implies 1 2 |y||xy| 3 2 |y|. Thus

| T Ω f 2 ( x ) | C ( 2 B ) c | f ( y ) | | Ω ( x y ) | d y | y | n .
  1. (i)

    When s p and by Fubini’s theorem, we have

    ( 2 B ) c | f ( y ) | | Ω ( x y ) | d y | y | n = C ( 2 B ) c | f ( y ) | | Ω ( x y ) | | y | d t t n + 1 d y C 2 r 2 r | y | < t | f ( y ) | | Ω ( x y ) | d y d t t n + 1 C 2 r f L p ( B ( 0 , t ) ) ( B ( 0 , t ) | Ω ( x y ) | s d y ) 1 s | B ( 0 , t ) | 1 1 p 1 s d t t n + 1 C 2 r f L p ( B ( 0 , t ) ) d t t n p + 1 .

Hence, for all p(0,), the inequality

T Ω f 2 L p ( B ) C r n p 2 r f L p ( B ( 0 , t ) ) d t t n p + 1

holds.

  1. (ii)

    When p<s, by Fubini’s theorem and the Minkowski inequality, we get

    T Ω f 2 L p ( B ) ( B | 2 r B ( 0 , t ) | f ( y ) | | Ω ( x y ) | d y d t t n + 1 | p d x ) 1 p 2 r B ( 0 , t ) | f ( y ) | ( B | Ω ( x y ) | p d x ) 1 p d y d t t n + 1 C 2 r B ( 0 , t ) | f ( y ) | ( B ( 0 , t ) | Ω ( x y ) | s d x ) 1 s | B | 1 p 1 s d y d t t n + 1 C r n p n s 2 r B ( 0 , t ) | f ( y ) | d y d t t n n s + 1 C r n p n s 2 r f L p ( B ( 0 , t ) ) d t t n p n s + 1 .

On the other hand, for any q>0, we have

f L p ( 2 B ) =C r n q f L p ( 2 B ) 2 r d t t n q + 1 C r n q 2 r f L p ( B ( 0 , t ) ) d t t n q + 1 .

Combining the above estimates, we complete the proof of Lemma 2.1. □

Theorem 2.2 Let 1<p< and Ω L s ( S n 1 ). Let T Ω be a sublinear operator satisfying (1.1) and bounded on L p ( R n ) for p>1. If either of the two conditions

  1. (i)

    when s p, ( φ 1 , φ 2 ) satisfies the condition

    r ess inf t < τ < φ 1 ( τ ) τ n p t n p + 1 dtC φ 2 (r),
  2. (ii)

    when p<s, ( φ 1 , φ 2 ) satisfies the condition

    r ess inf t < τ < φ 1 ( τ ) τ n p t n p n s + 1 dtC φ 2 (r) r n s

is satisfied, then the operator T Ω is bounded from B ˙ p , φ 1 to B ˙ p , φ 2 .

Proof When s p, by Lemma 2.1 and Theorem E, for ω1, p>1, we have

T Ω f B ˙ p , φ 2 C sup r > 0 φ 2 ( r ) 1 r f L p ( B ( 0 , t ) ) d t t n p + 1 = C sup r > 0 φ 2 ( r ) 1 0 r n p f L p ( B ( 0 , t p n ) ) d t = C sup r > 0 φ 2 ( r p n ) 1 0 r f L p ( B ( 0 , t p n ) ) d t C sup r > 0 φ 1 ( r p n ) 1 r f L p ( B ( 0 , r p n ) ) = C f B ˙ p , φ 1 .

For the case of p<s, we can use the same method to prove the desirable conclusion. □

The Calderón-Zygmund operator with rough kernel T ˜ Ω has the following integral expression:

T ˜ Ω f(x)= R n K(x,y)f(y)Ω(y)dy

for any test function f and xsuppf. The kernel is a locally integral function defined away from the diagonal satisfying the size condition

K(x,y)C 1 | x y | n

for all x,y R n and xy.

f L loc 1 , the rough Hardy-Littlewood maximal function M Ω is defined by

M Ω f(x)= sup t > 0 1 | B ( x , t ) | B ( x , t ) | Ω ( y ) | | f ( y ) | dy.

Then we can get the following corollary.

Corollary 2.3 Let 1<p< and Ω L s ( S n 1 ). If either of the two conditions

  1. (i)

    when s p, ( φ 1 , φ 2 ) satisfies the condition

    r ess inf t < τ < φ 1 ( τ ) τ n p t n p + 1 C φ 2 (r),
  2. (ii)

    when p<s, ( φ 1 , φ 2 ) satisfies the condition

    r ess inf t < τ < φ 1 ( τ ) τ n p t n p n s + 1 C φ 2 (r) r n s

is satisfied, then M Ω and T ˜ Ω are both bounded from B ˙ p , φ 1 to B ˙ p , φ 2 .

In the following statements, the boundedness of T Ω , α satisfying (1.2) in generalized central Morrey spaces is proved.

Lemma 2.4 Let 0<α<n, 1<p< n α and 1 q = 1 p α n , T Ω , α be a sublinear operator and satisfy (1.2) with Ω L s ( S n 1 ).

When s p and T Ω , α is bounded from L p ( R n ) to L q ( R n ), then the inequality

T Ω , α f L q ( B ( 0 , r ) ) C r n q 2 r t n q 1 f L p ( B ( 0 , t ) ) dt

holds for any ball B(0,r) and for all f L loc p ( R n ); or q<s and T Ω , α is bounded from L p ( R n ) to L q ( R n ), then the inequality

T Ω , α f L q ( B ( 0 , r ) ) C r n q n s 2 r t n q + n s 1 f L p ( B ( 0 , t ) ) dt

holds for any ball B(0,r) and for all f L loc p ( R n ).

Proof Let 0<α<n, 1<p< n α and 1 q = 1 p α n . For any r>0, set B=B(0,r) and 2B=B(0,2r). We write

f(x)=f(x) χ 2 B (x)+f(x) χ ( 2 B ) c (x):= f 1 (x)+ f 2 (x)

and have

T Ω , α f L q ( B ) T Ω , α f 1 L q ( B ) + T Ω , α f 2 L q ( B ) .

Since T Ω , α f 1 is bounded from L p ( R n ) to L q ( R n ), it follows that

T Ω , α f 1 L q ( B ) T Ω , α f 1 L q ( R n ) C f 1 L p ( R n ) =C f L p ( 2 B ) ,

where the constant C>0 is independent of f.

Since xB, y ( 2 B ) c , thus

| T Ω , α f 2 ( x ) | C ( 2 B ) c | f ( y ) | | Ω ( x y ) | d y | y | n α .
  1. (i)

    When s p and by Fubini’s theorem, we have

    ( 2 B ) c | f ( y ) | | Ω ( x y ) | d y | y | n α = C ( 2 B ) c | f ( y ) | | Ω ( x y ) | | y | d t t n + 1 α d y C 2 r 2 r | y | < t | f ( y ) | | Ω ( x y ) | d y d t t n + 1 α C 2 r f L p ( B ( 0 , t ) ) ( B ( 0 , t ) | Ω ( x y ) | s d y ) 1 s | B ( 0 , t ) | 1 1 p 1 s d t t n + 1 α C 2 r f L p ( B ( 0 , t ) ) d t t n q + 1 .

Hence, for all p(0,), the inequality

T Ω , α f 2 L q ( B ) C r n q 2 r f L p ( B ( 0 , t ) ) d t t n q + 1

holds.

  1. (ii)

    When q<s, by Fubini’s theorem and the Minkowski inequality, we get

    T Ω , α f 2 L p ( B ) ( B | 2 r B ( 0 , t ) | f ( y ) | | Ω ( x y ) | d y d t t n + 1 α | q d x ) 1 q 2 r B ( 0 , t ) | f ( y ) | ( B | Ω ( x y ) | q d x ) 1 q d y d t t n + 1 α C 2 r B ( 0 , t ) | f ( y ) | ( B ( 0 , t ) | Ω ( x y ) | s d x ) 1 s | B | 1 q 1 s d y d t t n + 1 α C r n q n s 2 r B ( 0 , t ) | f ( y ) | d y d t t n n s + 1 α C r n q n s 2 r f L p ( B ( 0 , t ) ) d t t n q n s + 1 .

Similarly, combining the above estimates, we finish this proof. □

Theorem 2.5 Let 0<α<n, 1<p< n α , 1 q = 1 p α n and Ω L s ( S n 1 ). Let T Ω , α be a sublinear operator T Ω satisfying (1.2) and bounded from L p ( R n ) to L q ( R n ). If either of the two conditions

  1. (i)

    when s p, ( φ 1 , φ 2 ) satisfies the condition

    r ess inf t < τ < φ 1 ( τ ) τ n p t n q + 1 dtC φ 2 (r),
  2. (ii)

    when q<s, ( φ 1 , φ 2 ) satisfies the condition

    r ess inf t < τ < φ 1 ( τ ) τ n p t n q n s + 1 dtC φ 2 (r) r n s

is satisfied, then the operator T Ω , α is bounded from B ˙ p , φ 1 to B ˙ q , φ 2 .

Proof When s p, by Lemma 2.1 and Theorem E, for 1<p< n α and 1 q = 1 p α n , we have

T Ω , α f B ˙ q , φ 2 C sup r > 0 φ 2 ( r ) 1 r f L p ( B ( 0 , t ) ) d t t n q + 1 = C sup r > 0 φ 2 ( r ) 1 0 r n q f L p ( B ( 0 , t q n ) ) d t = C sup r > 0 φ 2 ( r q n ) 1 0 r f L p ( B ( 0 , t q n ) ) d t C sup r > 0 φ 1 ( r q n ) 1 r p q f L p ( B ( 0 , r q n ) ) = C f B ˙ p , φ 1 .

For the case of q<s, we can also use the same method to prove the desirable conclusion. □

f L loc 1 , the rough fractional maximal function M Ω , α and the rough fractional integral I Ω , α are defined by

M Ω , α f ( x ) = sup t > 0 1 | B ( x , t ) | 1 + α B ( x , t ) | Ω ( y ) | | f ( y ) | d y , I Ω , α f ( x ) = sup t > 0 R n Ω ( y ) f ( y ) | x y | n α d y

for 0<α<n.

Corollary 2.6 Let 0<α<n, 1<p< n α , 1 q = 1 p α n and Ω L s ( S n 1 ). If either of the two conditions

  1. (i)

    when s p, ( φ 1 , φ 2 ) satisfies the condition

    r ess inf t < τ < φ 1 ( τ ) τ n p t n q + 1 dtC φ 2 (r),
  2. (ii)

    when q<s, ( φ 1 , φ 2 ) satisfies the condition

    r ess inf t < τ < φ 1 ( τ ) τ n p t n q n s + 1 dtC φ 2 (r) r n s

is satisfied, then M Ω , α and I Ω , α are both bounded from B ˙ p , φ 1 to B ˙ q , φ 2 .

Remark 1 When s=, the comments in Theorem 2.2 and in Theorem 2.5 can be obtained from Lemmas 4.4 and 5.3 in [9].

3 The commutators of a linear operator with rough kernel

Let T ˜ be a Calderón-Zygmund singular integral operator and bBMO( R n ). The commutator operator [ T ˜ ,b] is defined by

[ T ˜ ,b]f(x)=b(x) T ˜ f(x) T ˜ (bf)(x).

A well-known result of Coifman et al. [24] states that the commutator [ T ˜ ,b] is bounded on L p ( R n ) for 1<p< if and only if bBMO( R n ).

Since BMO p > 1 CBMO p , λ when λ=0, if we only assume b CBMO p , λ , then [ T ˜ ,b] may not be a bounded operator on L p ( R n ). However, it has some boundedness properties on other spaces. As a matter of fact, in [25] and [26], they considered the commutators with b CBMO p , λ . Here we also obtain some boundedness of the commutators with b CBMO p , λ on generalized central Morrey spaces.

We need the following statement on the boundedness of the Hardy-type operator

H 1 g(t):= 1 t 0 t ln ( 1 + t r ) g(r)dr,0<t<.

Theorem F [27]

The inequality

ess sup t > 0 ν 2 (t) H 1 g(t)cess sup t > 0 ν 1 (t)g(t)

holds for all non-negative and non-increasing g on (0,) if and only if

A:= sup t > 0 ν 2 ( t ) t 0 t ln ( 1 + t r ) d r ess sup 0 < τ < r ν 1 ( τ ) <,

and cA.

Lemma 3.1 Let 1<p<, b CBMO p 2 , λ , 0<λ< 1 n and 1 p = 1 p 1 + 1 p 2 , T Ω is a sublinear operator and satisfies (1.1) with Ω L s ( S n 1 ).

When s p and T Ω is bounded on L p ( R n ) for 1<p<, then the inequality

[ T Ω , b ] f L p ( B ( 0 , r ) ) C r n p 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1

holds for any ball B(0,r) and for all f L loc p 1 ( R n ); or p 1 <s and T Ω is bounded on L p ( R n ) for 1<p<, then the inequality

[ T Ω , b ] f L p ( B ( 0 , r ) ) C r n p n s 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n p 1 n s + 1

holds for any ball B(0,r) and for all f L loc p 1 ( R n ).

Proof Let 1<p<, b CBMO p 2 , λ and 1 p = 1 p 1 + 1 p 2 . For any r>0, set B=B(0,r) and 2B=B(0,2r). We can write

f(x)=f(x) χ 2 B (x)+f(x) χ ( 2 B ) c (x):= f 1 (x)+ f 2 (x)

and

[ T Ω , b ] f ( x ) = ( b ( x ) b B ) T Ω f 1 ( x ) T Ω ( ( b ( ) b B ) f 1 ) ( x ) + ( b ( x ) b B ) T Ω f 2 ( x ) T Ω ( ( b ( ) b B ) f 2 ) ( x ) = : I 1 + I 2 + I 3 + I 4 .

Hence, we have

[ T Ω , b ] f L p ( B ) I 1 L p ( B ) + I 2 L p ( B ) + I 3 L p ( B ) + I 4 L p ( B ) .

Since T Ω is bounded on L p ( R n ), it follows that

I 1 L p ( B ) = ( B | b ( x ) b B | p | T Ω f 1 ( x ) | p d x ) 1 p ( B | b ( x ) b B | p 2 d x ) 1 p 2 ( B | T Ω f 1 ( x ) | p 1 d x ) 1 p 1 C r n p 2 + n λ b CBMO p 2 , λ f L p 1 ( 2 B ) ,

where the constant C>0 is independent of f.

For I 2 , we have

I 2 L p ( B ) = ( B | T Ω ( ( b ( ) b B ) f 1 ) ( x ) | p d x ) 1 p C ( R n | b ( x ) b B | p | f 1 ( x ) | p d x ) 1 p C ( B | b ( x ) b B | p 2 d x ) 1 p 2 ( B | f ( x ) | p 1 d x ) 1 p 1 C r n p 2 + n λ b CBMO p 2 , λ f L p 1 ( 2 B ) .

For I 3 , it is known that xB, y ( 2 B ) c , which implies 1 2 |y||xy| 3 2 |y|.

  1. (i)

    When s p and by Fubini’s theorem, we have

    | T Ω f 2 ( x ) | C ( 2 B ) c | f ( y ) | | Ω ( x y ) | d y | y | n = C ( 2 B ) c | f ( y ) | | Ω ( x y ) | | y | d t t n + 1 d y = C 2 r 2 r | y | < t | f ( y ) | | Ω ( x y ) | d y d t t n + 1 C 2 r f L p 1 ( B ( 0 , t ) ) ( B ( 0 , t ) | Ω ( x y ) | s d y ) 1 s | B ( 0 , t ) | 1 1 p 1 1 s d t t n + 1 C 2 r f L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 ,

thus

I 3 L p ( B ) C ( B | b ( x ) b B | p d x ) 1 p 2 r f L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 C r n p + n λ 2 r f L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 C r n p 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 .
  1. (ii)

    When p 1 <s, by Fubini’s theorem and the Minkowski inequality, we get

    I 3 L p ( B ) ( B | 2 r B ( 0 , t ) | b ( x ) b B | | f ( y ) | | Ω ( x y ) | d y d t t n + 1 | p d x ) 1 p 2 r B ( 0 , t ) | f ( y ) | ( B | b ( x ) b B | p | Ω ( x y ) | p d x ) 1 p d y d t t n + 1 2 r B ( 0 , t ) | f ( y ) | ( B | b ( x ) b B | p 2 d x ) 1 p 2 ( B | Ω ( x y ) | p 1 d x ) 1 p 1 d y d t t n + 1 C r n p 2 + n λ 2 r B ( 0 , t ) | f ( y ) | ( B ( 0 , t ) | Ω ( x y ) | s d x ) 1 s | B | 1 p 1 1 s d y d t t n + 1 C r n p n s + n λ 2 r B ( 0 , t ) | f ( y ) | d y d t t n n s + 1 C r n p n s 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n p 1 n s + 1 .

On the other hand, for I 4 , by Fubini’s theorem, we have

| [ T Ω , b ] f 2 ( x ) | C ( 2 B ) c | b ( y ) b B | | f ( y ) | | Ω ( x y ) | d y | y | n C 2 r B ( 0 , t ) | b ( y ) b B | | f ( y ) | | Ω ( x y ) | d y d t t n + 1 C 2 r B ( 0 , t ) | b ( y ) b B ( 0 , t ) | | f ( y ) | | Ω ( x y ) | d y d t t n + 1 + C 2 r B ( 0 , t ) | b B ( 0 , r ) b B ( 0 , t ) | | f ( y ) | | Ω ( x y ) | d y d t t n + 1 = : I 41 + I 42 .
  1. (i)

    When s p, we obtain

    I 41 C 2 r ( B ( 0 , t ) | b ( y ) b B ( 0 , t ) | p | f ( y ) | p d y ) 1 p ( B ( 0 , t ) | Ω ( x y ) | s d y ) 1 s | B ( 0 , t ) | 1 1 p 1 s d t t n + 1 C 2 r ( B ( 0 , t ) | b ( y ) b B ( 0 , t ) | p 2 d y ) 1 p 2 f L p 1 ( B ( 0 , t ) ) d t t n p + 1 C 2 r t n λ f L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 ,

then

I 41 L p ( B ) C r n p 2 r t n λ f L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 .

Moreover,

I 42 C 2 r | b B ( 0 , r ) b B ( 0 , t ) | B ( 0 , t ) | f ( y ) | | Ω ( x y ) | d y d t t n + 1 C 2 r | b B ( 0 , r ) b B ( 0 , t ) | ( B ( 0 , t ) | f ( y ) | p 1 d y ) 1 p 1 ( B ( 0 , t ) | Ω ( x y ) | s d y ) 1 s | B ( 0 , t ) | 1 1 p 1 1 s d t t n + 1 C 2 r ( 1 + ln t r ) t n λ f L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 ,

then

I 42 L p ( B ) C r n p 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 .

By estimating I 41 and I 42 , we obtain

I 4 L p ( B ) C r n p 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 .
  1. (ii)

    When p 1 <s, by the Minkowski inequality, we get

    I 41 L p ( B ) C 2 r B ( 0 , t ) | b ( y ) b B ( 0 , t ) | | f ( y ) | ( B | Ω ( x y ) | p d x ) 1 p d y d t t n + 1 C r n p n s 2 r B ( 0 , t ) | b ( y ) b B ( 0 , t ) | | f ( y ) | d y d t t n n s + 1 C r n p n s 2 r ( B ( 0 , t ) | b ( y ) b B ( 0 , t ) | p 2 d y ) 1 p 2 f L p 1 ( B ( 0 , t ) ) t n n p d t t n n s + 1 C r n p n s 2 r t n λ f L p 1 ( B ( 0 , t ) ) d t t n p 1 n s + 1

and

I 42 L p ( B ) C 2 r | b B ( 0 , r ) b B ( 0 , t ) | B ( 0 , t ) | f ( y ) | ( B | Ω ( x y ) | p d x ) 1 p d y d t t n + 1 C r n p n s 2 r | b B ( 0 , r ) b B ( 0 , t ) | B ( 0 , t ) | f ( y ) | d y d t t n n s + 1 C r n p n s 2 r | b B ( 0 , r ) b B ( 0 , t ) | f L p 1 ( B ( 0 , t ) ) d t t n p 1 n s + 1 C r n p n s 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n p 1 n s + 1 .

Hence, we have

I 4 L p ( B ) C r n p n s 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n p 1 n s + 1 .

Moreover, for any q>0, we have

r n p 2 + n λ f L p 1 ( 2 B ) = C r n p 2 + n λ + n q f L p 1 ( 2 B ) 2 r d t t n q + 1 C r n p 2 + n q 2 r t n λ f L p 1 ( B ( 0 , t ) ) d t t n q + 1 C r n p 2 + n q 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n q + 1 .

Now combining all the above estimates, we end the proof. □

Then we have the following conclusions.

Theorem 3.2 Let 1<p<, b CBMO p 2 , λ , 0<λ< 1 n , 1 p = 1 p 1 + 1 p 2 and Ω L s ( S n 1 ). Let T Ω be a linear operator satisfying (1.1) and bounded on L p ( R n ) for p>1. If either of the two conditions

  1. (i)

    when s p, ( φ 1 , φ 2 ) satisfies the condition

    r ( 1 + ln t r ) t n λ ess inf t < τ < φ 1 ( τ ) τ n p 1 t n p 1 + 1 dtC φ 2 (r),
  2. (ii)

    when p 1 <s, ( φ 1 , φ 2 ) satisfies the condition

    r ( 1 + ln t r ) t n λ ess inf t < τ < φ 1 ( τ ) τ n p 1 t n p 1 n s + 1 dtC φ 2 (r) r n s

is satisfied, then the operator [ T Ω ,b] is bounded from B ˙ p 1 , φ 1 to B ˙ p , φ 2 .

Corollary 3.3 Let 1<p<, b CBMO p 2 , λ , 0<λ< 1 n , 1 p = 1 p 1 + 1 p 2 and Ω L s ( S n 1 ). If either of the two conditions

  1. (i)

    when s p, ( φ 1 , φ 2 ) satisfies the condition

    r ( 1 + ln t r ) t n λ ess inf t < τ < φ 1 ( τ ) τ n p 1 t n p 1 + 1 dtC φ 2 (r),
  2. (ii)

    when p 1 <s, ( φ 1 , φ 2 ) satisfies the condition

    r ( 1 + ln t r ) t n λ ess inf t < τ < φ 1 ( τ ) τ n p 1 t n p 1 n s + 1 dtC φ 2 (r) r n s

is satisfied, then the operator [ T ˜ Ω ,b] is bounded from B ˙ p 1 , φ 1 to B ˙ p , φ 2 .

About the commutator of linear operator T Ω , α satisfying (1.2), we get the following corresponding results.

Lemma 3.4 Let 0<α<n, 1< p 1 < n α , b CBMO p 2 , λ , 0<λ< 1 n , p 1 < p 2 < and let

1 p = 1 p 1 + 1 p 2 α n , 1 q = 1 p 1 α n , 1 h = 1 p 1 + 1 p 2 .

T Ω α is a sublinear operator and satisfies (1.2) with Ω L s ( S n 1 ).

When s h, T Ω , α is bounded from L t ( R n ) to L m ( R n ) for any 1<t< n α and 1 m = 1 t α n , then the inequality

[ T Ω , α , b ] f L p ( B ( 0 , r ) ) C r n p 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n q + 1

holds for any ball B(0,r) and all f L loc p 1 ( R n ); or q<s, T Ω , α is bounded from L t ( R n ) to L m ( R n ) for any 1<t< n α and 1 m = 1 t α n , then the inequality

[ T Ω , α , b ] f L p ( B ( 0 , r ) ) C r n p n s 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n q n s + 1

holds for any ball B(0,r) and all f L loc p 1 ( R n ).

Proof Let 0<α<n, 1< p 1 < n α , b CBMO p 2 , λ , 0<λ< 1 n . For any r>0, set B=B(0,r) and 2B=B(0,2r). We also write

f(x)=f(x) χ 2 B (x)+f(x) χ ( 2 B ) c (x):= f 1 (x)+ f 2 (x)

and

[ T Ω , α , b ] f ( x ) = ( b ( x ) b B ) T Ω , α f 1 ( x ) T Ω , α ( ( b ( ) b B ) f 1 ) ( x ) + ( b ( x ) b B ) T Ω , α f 2 ( x ) T Ω , α ( ( b ( ) b B ) f 2 ) ( x ) = : II 1 + II 2 + II 3 + II 4 .

Hence, we have

[ T Ω , α , b ] f L p ( B ) II 1 L p ( B ) + II 2 L p ( B ) + II 3 L p ( B ) + II 4 L p ( B ) .

Since T Ω , α is bounded from L p 1 ( R n ) to L q ( R n ) and 1 q = 1 p 1 α n , it follows that

II 1 L p ( B ) = ( B | b ( x ) b B | p | T Ω , α f 1 ( x ) | p d x ) 1 p ( B | b ( x ) b B | p 2 d x ) 1 p 2 ( B | T Ω , α f 1 ( x ) | q d x ) 1 q C r n p 2 + n λ b CBMO p 2 , λ f L p 1 ( 2 B ) ,

where the constant C>0 is independent of f.

For II 2 , 1 p = 1 h α n and 1 h = 1 p 1 + 1 p 2 ,

II 2 L p ( B ) = ( B | T Ω , α ( ( b ( ) b B ) f 1 ) ( x ) | p d x ) 1 p ( R n | b ( x ) b B | h | f 1 ( x ) | h d x ) 1 h ( B | b ( x ) b B | p 2 d x ) 1 p 2 ( B | f ( x ) | p 1 d x ) 1 p 1 C r n p 2 + n λ b CBMO p 2 , λ f L p 1 ( 2 B ) .

For I 3 ,

  1. (i)

    when s h, by Fubini’s theorem, since xB, we have

    | T Ω , α f 2 ( x ) | C ( 2 B ) c | f ( y ) | | Ω ( x y ) | d y | y | n α = C ( 2 B ) c | f ( y ) | | Ω ( x y ) | | y | d t t n α + 1 d y = C 2 r 2 r | y | < t | f ( y ) | | Ω ( x y ) | d y d t t n α + 1 C 2 r f L p 1 ( B ( 0 , t ) ) ( B ( 0 , t ) | Ω ( x y ) | s d y ) 1 s | B ( 0 , t ) | 1 1 p 1 1 s d t t n α + 1 C 2 r f L p 1 ( B ( 0 , t ) ) d t t n q + 1 ,

thus

I 3 L p ( B ) C ( B | b ( x ) b B | p d x ) 1 p 2 r f L p 1 ( B ( 0 , t ) ) d t t n q + 1 C ( B | b ( x ) b B | p 2 d x ) 1 p 2 r n q 2 r f L p 1 ( B ( 0 , t ) ) d t t n q + 1 C r n p + n λ 2 r ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n q + 1 C r n p 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n q + 1 ;
  1. (ii)

    when q<s, by Fubini’s theorem and the Minkowski inequality, we get

    I 3 L p ( B ) ( B | 2 r B ( 0 , t ) | b ( x ) b B | | f ( y ) | | Ω ( x y ) | d y d t t n α + 1 | p d x ) 1 p 2 r B ( 0 , t ) | f ( y ) | ( B | b ( x ) b B | p | Ω ( x y ) | p d x ) 1 p d y d t t n α + 1 2 r B ( 0 , t ) | f ( y ) | ( B | b ( x ) b B | p 2 d x ) 1 p 2 ( B | Ω ( x y ) | q d x ) 1 q d y d t t n α + 1 C r n p 2 + n λ 2 r B ( 0 , t ) | f ( y ) | ( B ( 0 , t ) | Ω ( x y ) | s d x ) 1 s | B | 1 q 1 s d y d t t n α + 1 C r n p n s + n λ 2 r B ( 0 , t ) | f ( y ) | d y d t t n n s α + 1 C r n p n s 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n q n s + 1 .

On the other hand, for I 4 , by Fubini’s theorem, we have

| [ T Ω , α , b ] f 2 ( x ) | C ( 2 B ) c | b ( y ) b B | | f ( y ) | | Ω ( x y ) | d y | y | n α C 2 r B ( 0 , t ) | b ( y ) b B | | f ( y ) | | Ω ( x y ) | d y d t t n α + 1 C 2 r B ( 0 , t ) | b ( y ) b B ( 0 , t ) | | f ( y ) | | Ω ( x y ) | d y d t t n α + 1 + C 2 r B ( 0 , t ) | b B ( 0 , r ) b B ( 0 , t ) | | f ( y ) | | Ω ( x y ) | d y d t t n α + 1 = : I 41 + I 42 .
  1. (i)

    When s h, we obtain

    I 41 C 2 r ( B ( 0 , t ) | b ( y ) b B ( 0 , t ) | h | f ( y ) | h d y ) 1 h ( B ( 0 , t ) | Ω ( x y ) | s d y ) 1 s | B ( 0 , t ) | 1 1 h 1 s d t t n α + 1 C 2 r ( B ( 0 , t ) | b ( y ) b B ( 0 , t ) | p 2 d y ) 1 p 2 f L p 1 ( B ( 0 , t ) ) t n n h d t t n α + 1 C 2 r t n λ f L p 1 ( B ( 0 , t ) ) d t t n q + 1 ,

then

I 41 L p ( B ) C r n p 2 r t n λ f L p 1 ( B ( 0 , t ) ) d t t n q + 1 .

For I 42 , we have

I 42 C 2 r | b B ( 0 , r ) b B ( 0 , t ) | B ( 0 , t ) | f ( y ) | | Ω ( x y ) | d y d t t n α + 1 C 2 r | b B ( 0 , r ) b B ( 0 , t ) | ( B ( 0 , t ) | f ( y ) | p 1 d y ) 1 p 1 ( B ( 0 , t ) | Ω ( x y ) | s d y ) 1 s | B ( 0 , t ) | 1 1 p 1 1 s d t t n α + 1 C 2 r ( 1 + ln t r ) t n λ f L p 1 ( B ( 0 , t ) ) d t t n q + 1 ,

then

I 42 L p ( B ) C r n p 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n q + 1 .

Then, by estimating I 41 and I 42 , we obtain

I 4 L p ( B ) C r n p 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n q + 1 .
  1. (ii)

    When q<s, by the Minkowski inequality, we get

    I 41 L p ( B ) C 2 r B ( 0 , t ) | b ( y ) b B ( 0 , t ) | | f ( y ) | ( B | Ω ( x y ) | p d x ) 1 p d y d t t n α + 1 C r n p n s 2 r B ( 0 , t ) | b ( y ) b B ( 0 , t ) | | f ( y ) | d y d t t n n s α + 1 C r n p n s 2 r ( B ( 0 , t ) | b ( y ) b B ( 0 , t ) | p 2 d y ) 1 p 2 f L p 1 ( B ( 0 , t ) ) t n n h d t t n n s α + 1 C r n p n s 2 r t n λ f L p 1 ( B ( 0 , t ) ) d t t n q n s + 1

and

I 42 L p ( B ) C 2 r | b B ( 0 , r ) b B ( 0 , t ) | B ( 0 , t ) | f ( y ) | ( B | Ω ( x y ) | p d x ) 1 p d y d t t n α + 1 C r n p n s 2 r | b B ( 0 , r ) b B ( 0 , t ) | B ( 0 , t ) | f ( y ) | d y d t t n n s α + 1 C r n p n s 2 r | b B ( 0 , r ) b B ( 0 , t ) | f L p 1 ( B ( 0 , t ) ) d t t n q n s + 1 C r n p n s 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n q n s + 1 .

Hence, we have

I 4 L p ( B ) C r n p n s 2 r t n λ ( 1 + ln t r ) f L p 1 ( B ( 0 , t ) ) d t t n q n s + 1 .

Then we end this proof. □

Theorem 3.5 Let 0<α<n, 1< p 1 < n α , b CBMO p 2 , λ , 0<λ< 1 n , p 1 < p 2 < and

1 p = 1 p 1 + 1 p 2 α n , 1 q = 1 p 1 α n , 1 h = 1 p 1 + 1 p 2 .

Let T Ω , α be a linear operator satisfying (1.2) with Ω L s ( S n 1 ), which is bounded from L t ( R n ) to L m ( R n ) for any 1<t< n α , 1 m = 1 t α n . If either of the two conditions

  1. (i)

    when s h, ( φ 1 , φ 2 ) satisfies the condition

    r ( 1 + ln t r ) t n λ ess inf t < τ < φ 1 ( τ ) τ n p 1 t n q + 1 dtC φ 2 (r),
  2. (ii)

    when q<s, ( φ 1 , φ 2 ) satisfies the condition

    r ( 1 + ln t r ) t n λ ess inf t < τ < φ 1 ( τ ) τ n p 1 t n q n s + 1 dtC φ 2 (r) r n s

is satisfied, then the operator [ T Ω , α ,b] is bounded from B ˙ p 1 , φ 1 to B ˙ p , φ 2 .

Corollary 3.6 Let 0<α<n, 1< p 1 < n α , b CBMO p 2 , λ , 0<λ< 1 n , p 1 < p 2 <, Ω L s ( S n 1 ) and

1 p = 1 p 1 + 1 p 2 α n , 1 q = 1 p 1 α n , 1 h = 1 p 1 + 1 p 2 .

If either of the two conditions

  1. (i)

    when s h, ( φ 1 , φ 2 ) satisfies the condition

    r ( 1 + ln t r ) t n λ ess inf t < τ < φ 1 ( τ ) τ n p 1 t n q + 1 dtC φ 2 (r),
  2. (ii)

    when q<s, ( φ 1 , φ 2 ) satisfies the condition

    r ( 1 + ln t r ) t n λ ess inf t < τ < φ 1 ( τ ) τ n p 1 t n q n s + 1 dtC φ 2 (r) r n s

is satisfied, then the operator [ I Ω , α ,b] is bounded from B ˙ p 1 , φ 1 to B ˙ p , φ 2 .

Remark 2 In our main results, if we let φ 1 = r n λ 1 and φ 2 = r n λ 2 , then by calculating we can recover some known results in [7] and [25].

Author’s contributions

The author contributed to all the main results in this paper.