1 Introduction

Gronwall-Bellman inequalities [1, 2] and their various generalizations can be used important tools in the study of existence, uniqueness, boundedness, stability, and other qualitative properties of solutions of differential equations, integral equations, and integral-differential equations.

Lemma 1 (Gronwall [1]). Let u(t) be a continuous function defined on the interval [a, a + h], a, h are nonnegative constants and

0 u ( t ) a t b u ( s ) + a d s , t [ a , a + h ] .
(1.1)

Then, 0 ≤ u(t) ≤ ah exp(bh), ∀t ∈ [a,a + h].

Lemma 2 (Bellman [2]). Let f, uC([0, h], [0, ∞)), h, c are positive constants. If u satisfy the inequality

u ( t ) c + 0 t f ( s ) u ( s ) d s , t [ 0 , h ] .
(1.2)

Then, u ( t ) cexp 0 t f ( s ) d s ,t [ 0 , h ] .

Lemma 3 (Lipovan [3]). Let u, fC([t0,T), R+). Further, let αC1([t0,T),[t0,T)) be nondecreasing with α(t) ≤ t on [t0,T), and let c be a nonnegative constant. Then the inequality

u ( t ) c + α ( t 0 ) α ( t ) f ( s ) u ( s ) d s , t [ t 0 , T )
(1.3)

implies that u ( t ) c exp α ( t 0 ) α ( t ) f ( s ) d s , t [ t 0 , T ) . .

Lemma 4 (Abdeldaim and Yakout [4]). We assume that u(t) and f(t) are nonnegative real-valued continuous functions defined on I and satisfy the inequality

u ( t ) u 0 + 0 t f ( s ) u ( s ) d s 2 + 0 t f ( s ) u ( s ) u ( s ) + 2 0 s f ( τ ) u ( τ ) d τ d s , t I ,
(1.4)

where u 0 be a positive constant. Then

u ( t ) u 0 exp 0 t f ( s ) B 1 ( s ) d s , t I ,
(1.5)

where

B 1 ( t ) = u 0 exp 4 0 t f ( s ) d s 1 - u 0 0 t f ( s ) exp 4 0 s f ( τ ) d τ d s , t I ,
(1.6)

such that u 0 0 t f ( s ) exp 4 0 s f ( τ ) d τ ds<1.

Lemma 5 (Abdeldaim and Yakout [4]). We assume that u(t) and f(t) are nonnegative real-valued continuous functions defined on I and satisfy the inequality

u p + 1 ( t ) u 0 + 0 t f ( s ) u p ( s ) d s 2 + 2 0 t f ( s ) u p ( s ) u ( s ) + 0 s f ( τ ) u p ( τ ) d τ d s ,
(1.7)

for all tI, where u0 > 0, p ∈ (0,1), are constants. Then

u ( t ) u 0 1 p + 1 + 2 p + 1 0 t f ( s ) B 2 ( s ) d s , t I ,
(1.8)

where

B 2 ( t ) = exp 2 p + 1 0 t f ( s ) d s u 0 1 - p p + 1 + 2 ( 1 - p ) 0 t f ( s ) exp - 2 1 - p p + 1 0 s f ( τ ) d τ d s 1 1 - p ,
(1.9)

for all tI.

Lemma 6 (see [5]). Let φC(R+,R+) be a increasing function, u,a,fC([t0,T),R+), a(t) be a increasing function, and αC1([t0,T), [t0,T)) be nondecreasing with α(t) ≤ t on [t0,T) where T ∈ (0,∞) is a constant. Then the inequality

u ( t ) a ( t ) + α ( 0 ) α ( t ) f ( s ) φ ( u ( s ) ) d s , t [ t 0 , T )
(1.10)

implies that

u ( t ) W - 1 W ( a ( t ) ) + α ( 0 ) α ( t ) f ( s ) d s , t [ t 0 , T 1 ) ,
(1.11)

where

W ( t ) = 1 t d t φ ( t ) d s , t > 0 ,
(1.12)

W -1 is the reverse function of W, T 1 is the largest number such that

W ( a ( T 1 ) ) + α ( 0 ) α ( T 1 ) f ( s ) d s 1 d t φ ( t ) d s .

There can be found a lot of generalizations of Gronwall-Bellman inequalities in various cases from literature (e.g., [313]).

In this article, we discuss some retarded nonlinear integral inequalities, where linear case u(t) in integral functions in [4] is changed into the nonlinear case ϕ(u(t)), and the non-retarded case t in [4] is changed into retarded case α(t), and give upper bound estimation of the unknown function by integral inequality technique.

2 Main result

In this section, we discuss some retarded integral inequalities of Gronwall-Bellman type. Throughout this article, let I = [0, ∞).

Theorem 1. Let φ,φ',αC1(I, I) be increasing functions with φ'(t) ≤ k, α(t) ≤ t, α(0) = 0, ∀tI; k, u0 be positive constants, we assume that u(t) and f(t) are nonnegative real-valued continuous functions defined on I and satisfy the inequality

u ( t ) u 0 + 0 α ( t ) f ( s ) φ ( u ( s ) ) d s 2 + 0 α ( t ) f ( s ) φ ( u ( s ) ) φ ( u ( s ) ) + 2 0 s f ( τ ) φ ( u ( τ ) ) d τ d s ,
(2.1)

for all tI. If u 0 - 1 -k 0 α ( t ) f ( s ) exp 4 0 s f ( τ ) d τ ds>0, then

z ( t ) Φ - 1 Φ ( u 0 ) + 0 α ( t ) f ( s ) B 3 ( s ) d s , t I ,
(2.2)

where

Φ ( x ) : = 1 x d s φ ( s ) , x > 0 ,
(2.3)
B 3 ( t ) : = exp ( 4 0 α ( t ) f ( s ) d s ) ( φ ( u 0 ) ) - 1 - k 0 α ( t ) f ( s ) exp 4 0 s f ( τ ) d τ d s - 1 .
(2.4)

Remark 1. If α(t) = t, φ(u(s)) = u(s), then Theorem 1 reduces Lemma 4.

Proof. Let z(t) denotes the function on the right-hand side of (2.1), which is a nonnegative and nondecreasing function on I with z(0) = u0. Then (2.1) is equivalent to

u ( t ) z ( t ) , u ( α ( t ) ) z ( α ( t ) ) , t I .
(2.5)

Differentiating z(t) with respect to t, we have

d z d t = 2 α ( t ) f ( α ( t ) ) φ ( u ( α ( t ) ) ) 0 α ( t ) f ( s ) φ ( u ( s ) ) d s + α ( t ) f ( α ( t ) ) φ ( u ( α ( t ) ) ) × φ ( u ( α ( t ) ) ) + 2 0 α ( t ) f ( τ ) φ ( u ( τ ) ) d τ d s , t I .
(2.6)

Using (2.5), we obtain

d z d t α ( t ) f ( α ( t ) ) φ ( z ( α ( t ) ) ) w ( t ) , t I ,
(2.7)

where w ( t ) :=φ ( z ( α ( t ) ) ) +4 0 α ( t ) f ( s ) φ ( z ( s ) ) ds,w ( 0 ) =φ ( z ( 0 ) ) =φ ( u 0 ) , w is a nonnegative and nondecreasing function on I. By the monotonicity φ, φ',z, and α(t) ≤ t we have φ(z(α(t))) ≤ w(t), φ'(z(α(t))) ≤ k. Differentiating w(t) with respect to t, and using (2.7) we have

d w d t φ ( z ( α ( t ) ) ) α ( t ) f ( α ( t ) ) w 2 ( t ) + 4 α ( t ) f ( α ( t ) ) w ( t ) k α ( t ) f ( α ( t ) ) w 2 ( t ) + 4 α ( t ) f ( α ( t ) ) w ( t ) , t I .
(2.8)

By w(t) > 0, we have

w - 2 ( t ) d w d t k α ( t ) f ( α ( t ) ) + 4 α ( t ) f ( α ( t ) ) w - 1 ( t ) , t I .
(2.9)

Let v(t) = w-1(t), from (2.9) we have

d v d t + 4 α ( t ) f ( α ( t ) ) v ( t ) - k α ( t ) f ( α ( t ) ) , t I .
(2.10)

Consider ordinary differential equation

d y d t + 4 α ( t ) f ( α ( t ) ) y ( t ) = - k α ( t ) f ( α ( t ) ) , y ( 0 ) = ( φ ( u 0 ) ) - 1 , t I .
(2.11)

The solution of Equation (2.11) is

y ( t ) = ( φ ( u 0 ) ) - 1 exp - 4 0 t α ( s ) f ( α ( s ) ) d s - exp - 4 0 t α ( s ) f ( α ( s ) ) d s 0 t k α ( s ) f ( α ( s ) ) exp 0 s 4 α ( τ ) f ( α ( τ ) ) d τ d s = ( φ ( u 0 ) ) - 1 exp - 4 0 α ( t ) f ( s ) d s - exp - 4 0 α ( t ) f ( s ) d s 0 α ( t ) k f ( s ) exp 4 0 s f ( τ ) d τ d s . = exp - 4 0 α ( t ) f ( s ) d s ( φ ( u 0 ) ) - 1 - k 0 α ( t ) f ( s ) exp 4 0 s f ( τ ) d τ d s .
(2.12)

By (2.10), (2.11), and (2.13), we obtain

v ( t ) exp - 4 0 α ( t ) f ( s ) d s ( φ ( u 0 ) ) - 1 - k 0 α ( t ) f ( s ) exp 4 0 s f ( τ ) d τ d s .
(2.13)

By the definition of B3(t) in (2.4) and the inequality (2.13), we have w(t) < B3(t),∀tI. From (2.7), we get

d z d t α ( t ) f ( α ( t ) ) φ ( z ( α ( t ) ) ) B 3 ( α ( t ) ) α ( t ) f ( α ( t ) ) B 3 ( α ( t ) ) φ ( z ( t ) ) , t I .
(2.14)

By taking t = s in the inequality (2.14) and integrating (2.14) from 0 to t, by the definition (2.3) of Φ we obtain

z ( t ) Φ - 1 Φ ( z ( 0 ) ) + 0 t α ( s ) f ( α ( s ) ) B 3 ( α ( s ) ) d s Φ - 1 Φ ( z ( 0 ) ) + 0 α ( t ) f ( s ) B 3 ( s ) d s ,
(2.15)

for all tI. This completes the proof of the Theorem 1.

Theorem 2. Let ψ(t),φ(t),φ(t)/t,α(t) ∈ C1(I,I) be increasing functions with ψ'(t) = φ(t),α(t) ≤ t, α(0) = 0, ∀tI; k, u0 be positive constants, we assume that u(t) and f(t) are nonnegative real-valued continuous functions defined on I and satisfy the inequality

ψ ( u ( s ) ) u 0 + 0 α ( t ) f ( s ) φ ( u ( s ) ) d s 2 + 0 α ( t ) f ( s ) φ ( u ( s ) ) u ( s ) + 2 0 s f ( τ ) φ ( u ( τ ) ) d τ d s ,
(2.16)

for all tI. Then

u ( t ) exp Ξ - 1 Ξ ( ln ( 1 + ψ - 1 ( u 0 ) ) + 0 α ( t ) f ( s ) d s ) + 0 α ( t ) 4 f ( s ) d s , t ( 0 , T 2 ) .
(2.17)

where

Ξ ( t ) : = 1 t exp ( s ) d s φ ( exp ( s ) ) , t > 0 ,
(2.18)

Ξ-1,ψ-1 are the reverse function of Ξ, ψ respectively, T2 is the largest number such that

Ξ ln ( 1 + ψ - 1 ( u 0 ) ) + 0 α ( t ) f ( s ) d s + 0 α ( t ) 4 f ( s ) d s 1 exp ( s ) d s ψ ( exp ( s ) ) , x R + .

Remark 2. If α(t) = t,φ(u(t)) = up(t),ψ(u(t)) = up+1(t)/(p + 1), by Theorem 2, we can obtain the result similar to Lemma 5.

Proof. Let ψ(z(t)) denotes the function on the right-hand side of (2.16), then z(t) is a nonnegative and nondecreasing function on I with z(0) = ψ-1(u0). Then (2.16) is equivalent to

u ( t ) z ( t ) , u ( α ( t ) ) z ( α ( t ) ) t I .
(2.19)

Differentiating ψ(z(t)) with respect to t, we have

ψ ( z ( t ) ) d z d t = 2 α ( t ) f ( α ( t ) ) φ ( u ( α ( t ) ) ) 0 α ( t ) f ( s ) φ ( u ( s ) ) d s + α ( t ) f ( α ( t ) ) φ ( u ( α ( t ) ) ) × u ( α ( t ) ) + 2 0 α ( t ) f ( τ ) φ ( u ( τ ) ) d τ d s , t I .
(2.20)

Using (2.19) and the relation ψ'(z(t)) = φ(z(t)), from (2.20) we obtain

d z d t α ( t ) f ( α ( t ) ) z ( t ) + 4 0 α ( t ) f ( s ) φ ( z ( s ) ) d s , t I .
(2.21)

Let w ( t ) :=z ( t ) +4 0 α ( t ) f ( s ) φ ( z ( s ) ) ds, then w(0) = z(0) = ψ-1(u0), z(t) ≤ w(t), w is a nonnegative and nondecreasing function on I. Differentiating w(t) with respect to t, and using (2.21) we have

d w d t α ( t ) f ( α ( t ) ) w ( t ) + 4 α ( t ) f ( α ( t ) ) φ ( z ( α ( t ) ) ) α ( t ) f ( α ( t ) ) w ( t ) + 4 α ( t ) f ( α ( t ) ) φ ( w ( α ( t ) ) ) , t I .
(2.22)

By w(t) > 0, we have

d w w ( t ) d t α ( t ) f ( α ( t ) ) + 4 α ( t ) f ( α ( t ) ) φ ( w ( α ( t ) ) ) / w ( α ( t ) ) , t I .
(2.23)

Integrating (2.23) from 0 to t, we have

ln w ( t ) ln ( 1 + w ( 0 ) ) + 0 t α ( s ) f ( α ( s ) ) d s + 0 t 4 α ( s ) f ( α ( s ) ) φ ( w ( α ( s ) ) ) ( w ( α ( s ) ) ) - 1 d s ln ( 1 + w ( 0 ) ) + 0 α ( t ) f ( s ) d s + 0 α ( t ) 4 f ( s ) φ ( w ( s ) ) ( w ( s ) ) - 1 d s ln ( 1 + w ( 0 ) ) + 0 α ( t ) f ( s ) d s + 0 α ( t ) 4 f ( s ) φ ( exp ( ln w ( s ) ) ) ( exp ( ln w ( s ) ) ) - 1 d s ,
(2.24)

for all tI. Using Lemma 6 and the Definition (2.18) of Ξ, we obtain

ln w ( t ) Ξ - 1 Ξ ( ln ( 1 + w ( 0 ) ) + 0 α ( t ) f ( s ) d s ) + 0 α ( t ) 4 f ( s ) d s = Ξ - 1 Ξ ( ln ( 1 + ψ - 1 ( u 0 ) ) + 0 α ( t ) f ( s ) d s ) + 0 α ( t ) 4 f ( s ) d s , t ( 0 , T 2 ) .
(2.25)

Using the relation u(t) ≤ z(t) ≤ w(t), we can obtain the estimation (2.17) of (2.16).

3 Application

In this section, we apply our result to the following nonlinear differential equation [4]

d x ( t ) d t = F ( t , x ( α ( t ) ) ) + H ( t , x ( α ( t ) ) , K ( t , x ( α ( t ) ) ) ) , t I , x ( 0 ) = x 0 ,
(3.26)

where x0 is a constant, F, KC(I × I, R), HC(I3, R), satisfy the following conditions

F ( t , x ( α ( t ) ) ) f 2 ( α ( t ) ) φ ( x ( α ( t ) ) ) 2 , K ( t , x ( α ( t ) ) ) f ( α ( t ) ) φ ( x ( α ( t ) ) ) ,
(3.27)
H ( t , x , y ) y ( φ ( x ) + 2 0 t y d s ) ,
(3.28)

where f(t) is nonnegative real-valued continuous function defined on I.

Corollary 1. Consider nonlinear system (3.26) and suppose that F,K, H satisfy the conditions (3.27) and (3.28). Let φ,φ', αC1(I, I) be increasing functions with φ'(t) ≤ k,α(t) ≤ t, α(0) = 0,∀tI, k be positive constants; then all solutions of Equation (3.26) exist on I and satisfy the following estimation

x ( t ) Φ - 1 Φ ( x 0 ) + 0 α ( t ) f ( s ) α ( α - 1 ( s ) ) B ( s ) d s , t I ,
(3.29)

where

Φ ( x ) : = 1 x d s φ ( s ) , x > 0 ,
(3.30)
B ( t ) : = exp 4 0 α ( t ) f ( s ) α ( α - 1 ( s ) ) d s × ( φ ( x 0 ) ) - 1 - k 0 α ( t ) f ( s ) α ( α - 1 ( s ) ) exp 4 0 s f ( τ ) α ( α - 1 ( τ ) ) d τ d s - 1 .
(3.31)

Proof. Integrating both sides of the Equation (3.26) from 0 to t, we get

x ( t ) = x 0 + 0 t F ( s , x ( α ( s ) ) ) d s + 0 t H ( s , x ( α ( s ) ) , K ( s , x ( α ( s ) ) ) ) d s , t I .
(3.32)

From (3.27), (3.28), and (3.32) we obtain

x ( t ) x 0 + 0 t f 2 ( α ( s ) ) φ ( x ( α ( t ) ) ) 2 d s + 0 t f ( α ( s ) ) φ ( x ( α ( t ) ) ) φ ( x ( α ( s ) ) ) + 2 0 s f ( α ( τ ) ) φ ( x ( α ( τ ) ) ) d τ d s x 0 + 0 α ( t ) f ( s ) φ ( x ( s ) ) α ( α - 1 ( s ) ) d s 2 + 0 α ( t ) f ( s ) φ ( x ( s ) ) α ( α - 1 ( s ) ) φ ( x ( α ( s ) ) ) + 2 0 s f ( τ ) φ ( x ( τ ) ) α ( α - 1 ( τ ) ) d τ d s , t I .
(3.33)

Applying Theorem 1 to (3.33), we get the estimation (3.29). This completes the proof of the Corollary 1.