1 Introduction and preliminaries

Let A p be the class of analytic functions

f(z)= z p + n = p + 1 a n z n ( p N = { 1 , 2 , 3 , } ) ,
(1.1)

defined in the open unit disc E={z:|z|<1}. A function f A p is a p-valent starlike function of order ρ if and only if

Re z f ( z ) f ( z ) >ρ,0ρ<p,zE.

This class of functions is denoted by S p (ρ). It is noted that S p (0)= S p . If f(z) A p satisfies

|arg z f ( z ) p f ( z ) |< π η 2
(1.2)

for some η(0,1] and for all zE, then the function f is called strongly starlike p-valent of order η in E. We denote this class by S ˜ p (η). Let f 1 (z) and f 2 (z) be analytic in E. We say f 1 (z) is subordinate to f 2 (z), written f 1 f 2 or f 1 (z) f 2 (z), if there exists a Schwarz function w(z), w(0)=0, and |w(z)|<1 in E, then f 1 (z)= f 2 (w(z)). A function f in A p is said to belong to the class S p [A,B], 1B<A1, if and only if

z f ( z ) f ( z ) p 1 + A z 1 + B z ,zE.

For p=1, we obtain the class S [A,B] of Janowski starlike functions. Janowski functions have extensively been studied by several researchers; see for example [13]. It is clear that f S p [A,B] if and only if

| z f ( z ) f ( z ) p 1 A B 1 B 2 |<p A B 1 B 2 (1<B<A1,zE),
(1.3)

and

Re z f ( z ) f ( z ) >p 1 A 2 (B=1,zE).

A function f A p is p-valent Bazilevic function of type (α,β) and order ρ if and only if

Re z f ( z ) f ( z ) ( f ( z ) g ( z ) ) α ( f ( z ) z p ) i β >ρ,0ρ<p,zE,

where α0, βR and g S p . For p=1 and ρ=0, this class was introduced by Bazilevic and these functions are univalent for α0, βR. This class of functions is studied by many authors; for some details, see [411].

Using this concept, we generalize and define a subclass of p-valent Bazilevic functions of type (α,β) as follows.

Definition 1.1 A function f M p (α,β,μ,A,B) if it satisfies the condition

where α0, μ>0, g S p , 1B<A1 and β is any real.

We have the following special cases.

  1. (i)

    For β=0, we have the subclass of Bazilevic functions defined by Patel [12].

  2. (ii)

    For β=0, p=1, g(z)=z, A=12ρ, B=1, we obtain the subclass of Bazilevic functions defined in [13].

For A=12ρ, B=1, we have the following subclass of analytic functions.

Definition 1.2 A function f B p (α,β,ρ) if it satisfies the condition

where α0, μ>0, g S p , 0ρ<1, β is any real and zE. In other words, a function f B p (α,β,ρ) if it satisfies the condition

We need the following definition and lemmas which will be used in our main results.

Definition 1.3 Let Ψ: C 2 ×EC be analytic in a domain D and h be univalent in E. If p is analytic in E with (p(z),z p (z);z)D when zE, then we say that p satisfies a first-order differential subordination if

Ψ ( p ( z ) , z p ( z ) ; z ) h(z),zE.
(1.4)

The univalent function q is called dominant of the differential subordination (1.4) if pq for all p satisfies (1.4). If q ˜ q for all dominants of (1.4), then we say that q ˜ is the best dominant of (1.4).

Lemma 1.4 ([14])

If 1B<A1, λ>0 and the complex number γ satisfies Re{γ}λ(1A)/(1B), then the differential equation

q(z)+ z q ( z ) λ q ( z ) + γ = 1 + A z 1 + B z ,zE,

has a univalent solution in E given by

q(z)={ z λ + γ ( 1 + B z ) λ ( A B ) / B λ 0 z t λ + γ 1 ( 1 + B t ) λ ( A B ) / B d t γ λ , B 0 , z λ + γ e λ A z λ 0 z t λ + γ 1 e λ A t d t γ λ , B = 0 .

If h(z)=1+ c 1 z+ c 2 z 2 + is analytic in E and satisfies

h(z)+ z h ( z ) λ h ( z ) + γ 1 + A z 1 + B z ,zE,

then

h(z)q(z) 1 + A z 1 + B z ,

and q(z) is the best dominant.

Lemma 1.5 ([15])

Let ε be a positive measure on [0,1]. Let g be a complex-valued function defined on E×[0,1] such that g(,t) is analytic in E for each t[0,1] and g(z,) is ε-integrable on [0,1] for all zE. In addition, suppose that Reg(z,t)>0, g(r,t) is real and Re{1/g(z,t)}1/g(r,t) for |z|r<1 and t[0,1]. If g(z)= 0 1 g(z,t)dε(t), then Re{1/g(z)}1/g(r).

Lemma 1.6 ([[16], Chapter 14])

Let a 1 , b 1 and c 1 0,1,2, be complex numbers. Then, for Re c 1 >Re b 1 >0,

Lemma 1.7 ([17])

Let 1 B 1 B 2 < A 2 A 1 1. Then

1 + A 2 z 1 + B 2 z 1 + A 1 z 1 + B 1 z .

Lemma 1.8 ([18])

Let F be analytic and convex in E. If f,g A p and f,gF, then

μf+(1μ)gF,0μ1.

Lemma 1.9 ([19])

Let f(z)= k = 0 a k z k be analytic in E and F(z)= k = 0 b k z k be analytic and convex in E. If fF, then

| a k || b 1 |(kN).

Lemma 1.10 ([20])

Let h(z)=1+ d 1 z+ d 2 z 2 + be analytic in E and h(z)0 in E. If there exists a point z 0 E such that |argh(z)|< π 2 η (|z|<| z 0 |) and |argh( z 0 )|= π 2 η (0<η1), then we have z 0 h ( z 0 ) h ( z 0 ) =ikη, where

{ k 1 2 ( x + 1 x ) , when arg h ( z 0 ) = π 2 η , k 1 2 ( x + 1 x ) , when arg h ( z 0 ) = π 2 η ,

and ( h ( z 0 ) ) 1 / η =±ix (x>0).

Lemma 1.11 Let g S [A,B]. Then the function

G(z)= [ c + α + i β z c + i β 0 z t c + i β 1 g α ( t ) d t ] 1 α
(1.5)

belongs to S [A,B] for cα 1 A 1 B .

Proof is straightforward by using Lemma 1.4.

Throughout this paper, α0, βR, μ>0, and 1B<A1 unless otherwise stated.

2 Main results

Theorem 2.1 If f M p (α,β,μ,A,B), then

z f ( z ) p f ( z ) ( f ( z ) g ( z ) ) α ( f ( z ) z p ) i β q(z),
(2.1)

where q(z)= μ p Q ( z ) and

Q(z)={ 0 1 t p μ 1 ( 1 + B z t 1 + B z ) p μ ( A B ) / B d t , B 0 , 0 1 t p μ 1 e p μ ( t 1 ) A z d t , B = 0 .
(2.2)

In hypergeometric function form,

q(z)={ [ 2 F 1 ( 1 , p μ ( 1 A B ) ; p μ + 1 ; B z B z + 1 ) ] 1 , B 0 , [ 1 F 1 ( 1 , p μ + 1 ; p μ A z ) ] 1 , B = 0 ,
(2.3)

and if A< μ B p , 1B<0, then M p (α,β,μ,A,B) B p (α,β,ρ), where

ρ=p { 2 F 1 ( 1 , p μ ( 1 A B ) ; p μ + 1 ; B B 1 ) } 1 .
(2.4)

This result is best possible.

Proof Let

h(z)= z f ( z ) p f ( z ) ( f ( z ) g ( z ) ) α ( f ( z ) z p ) i β ,

where h(z) is analytic in E with h(0)=1. Differentiating logarithmically, we obtain

(2.5)

Using Lemma 1.4 for λ= p μ and γ=0, we have

h(z)q(z) 1 + A z 1 + B z ,

where q(z) is given in (2.3) and is the best dominant of (2.5). Next, in order to prove M p (α,β,μ,A,B) B p (α,β,ρ), we show that inf | z | < 1 {Req(z)}=q(1). Now, we set a= p μ (BA)/B, b= p μ and c= p μ +1, then it is clear that c>b>0; therefore, for B0 it follows from (2.2) by using Lemma 1.6 that

Q ( z ) = ( 1 + B z ) a 0 1 t b 1 ( 1 + B t z ) a d t = Γ ( b ) Γ ( c ) 2 F 1 ( 1 , a , c ; B z B z + 1 ) .
(2.6)

To prove that inf | z | < 1 {Req(z)}=q(1), we need to show that

Re { 1 / Q ( z ) } 1/Q(1).

Since A< μ B p with 1B<0 implies that c>a>0, therefore, by using Lemma 1.6, (2.6) yields

Q(z)= 0 1 g(z,t)dε(t),

where

which is a positive measure on [0,1]. For 1B<0 it is clear that Reg(z,t)>0 and g(r,t) is real for 0|z|r<1 and t[0,1]. Also,

Re { 1 g ( z , t ) } =Re { 1 + ( 1 t ) B z 1 + B z } 1 ( 1 t ) B r 1 B r = 1 g ( r , t )

for |z|r<1. Therefore, using Lemma 1.5, we have

Re { 1 / Q ( z ) } 1/Q(r).

Now, letting r 1 , it follows

Re { 1 / Q ( z ) } 1/Q(1).

Therefore, M p (α,β,μ,A,B) B p (α,β,ρ). □

For β=0, we have the following result proved in [12].

Corollary 2.2 If f M p (α,μ,A,B), then

z f ( z ) p f ( z ) ( f ( z ) g ( z ) ) α { [ 2 F 1 ( 1 , p μ ( 1 A B ) ; p μ + 1 ; B z B z + 1 ) ] 1 , B 0 , [ 1 F 1 ( 1 , p μ + 1 ; p μ A z ) ] 1 , B = 0 ,

and if A< μ B p , 1B<0, then M p (α,μ,A,B) B p (α,ρ), where

ρ=p { 2 F 1 ( 1 , p μ ( 1 A B ) ; p μ + 1 ; B B 1 ) } 1 .

This result is best possible.

For p=1, we have the class M 1 (α,β,μ,A,B)=M(α,β,μ,A,B). We denote the class of functions fA, having Taylor series representation of the form

f(z)=z+ k = n + 1 a k z k

and satisfying the condition

(2.7)

by M (α,β,μ,A,B), where g(z)=z+ k = n + 1 b k z k such that Re z g ( z ) g ( z ) >0. Now, we derive the following result for the class M (α,β,μ,A,B).

Theorem 2.3 Let f M (α,β,μ,A,B). Then

| a n + 1 | ( A B ) + α ( n + 1 ) ( 1 + μ n ) | α + i β + n | ( 1 + μ n ) .
(2.8)

Proof Since f M (α,β,μ,A,B), therefore,

Now, using the fact that f(z)=z+ k = n + 1 a k z k and g(z)=z+ k = n + 1 b k z k , we obtain

1+ { ( α + i β + n ) ( 1 + μ n ) a n + 1 α ( 1 + μ n ) b n + 1 } z n + 1 + A z 1 + B z .

By a well-known result due to Janowski and Lemma 1.9, we have

|(α+iβ+n)(1+μn) a n + 1 α(1+μn) b n + 1 |AB.

By the triangle inequality, we obtain

|(α+iβ+n)(1+μn) a n + 1 ||α(1+μn) b n + 1 |AB.

Using the coefficient bound for the class S , we have the required result. □

For β=0 and g(z)=z, we have the following result proved in [13].

Corollary 2.4 Let fM(α,μ,A,B). Then

| a n + 1 | ( A B ) ( α + n ) ( 1 + μ n ) .

For β=0, p=1, g(z)=z, A=12ρ and B=1, we have the following result proved in [21].

Corollary 2.5 Let f satisfy the condition

Re { z f ( z ) f ( z ) ( f ( z ) z ) α + μ [ 1 + z f ( z ) f ( z ) + ( 1 α ) ( 1 z f ( z ) f ( z ) ) ] } >ρ.

Then

| a n + 1 | 2 ( 1 ρ ) ( n + α ) ( 1 + μ n ) .

Theorem 2.6 For μ 2 μ 1 0 and 1 B 1 B 2 < A 2 A 1 1,

M p (α,β, μ 2 , A 2 , B 2 ) M p (α,β, μ 1 , A 1 , B 1 ).

Proof Let f M p (α,β, μ 2 , A 2 , B 2 ). Then

Since 1 B 1 B 2 < A 2 A 1 1, therefore by Lemma 1.7, we have

Hence, we have f M p (α,β, μ 2 , A 1 , B 1 ). For μ 2 = μ 1 0, we have the required result. When μ 2 > μ 1 0, Theorem 2.1 implies that

z f ( z ) f ( z ) ( f ( z ) g ( z ) ) α ( f ( z ) z p ) i β p 1 + A 1 z 1 + B 1 z .

Now

Using Lemma 1.8, we have the required result. □

For β=0, we have the following result.

Corollary 2.7 For μ 2 μ 1 0 and 1 B 1 B 2 < A 2 A 1 1,

M p (α, μ 2 , A 2 , B 2 ) M p (α, μ 1 , A 1 , B 1 ).

This result is proved in [13].

For β=0, p=1, g(z)=z, A=12ρ and B=1, we have the class M(α,μ,ρ) defined as

Re [ z f ( z ) f ( z ) ( f ( z ) z ) α + μ { 1 + z f ( z ) f ( z ) z f ( z ) f ( z ) + α ( z f ( z ) f ( z ) 1 ) } ] >ρ
(2.9)

for zE. Now have the following result for the class M(α,μ,ρ) proved in [21].

Corollary 2.8 For α0, μ 2 μ 1 0 and 1> ρ 2 ρ 1 0,

M(α, μ 2 , ρ 2 )M(α, μ 1 , ρ 1 ).

Theorem 2.9 Let f A p satisfy

Re { f ( z ) z p } >0and| z f ( z ) f ( z ) ( f ( z ) g ( z ) ) α ( f ( z ) z p ) i β p|<σp,0<σ1,

for g S p . Then f is p-valent convex in |z|< R α , β , σ , where

R α , β , σ = ( ( 2 | 1 α i β | + 2 α p + σ ) ( 2 | 1 α i β | + 2 α p + σ ) 2 4 p ( 2 α p p σ ) ) / ( 2 ( 2 α p p σ ) ) .
(2.10)

Proof Let

h(z)= z f ( z ) p f ( z ) ( f ( z ) g ( z ) ) α ( f ( z ) z p ) i β 1,

where h(z) is analytic in E with h(0)=0 and |h(z)|<1. By using the Schwarz lemma, we get

h(z)=σzψ(z),

where ψ(z) is analytic in E with |ψ(z)|<1. Differentiating logarithmically, we have

1+ z f ( z ) f ( z ) =(1αiβ) z f ( z ) f ( z ) +α z g ( z ) g ( z ) + σ z ( z ψ ( z ) + ψ ( z ) ) 1 + σ z ψ ( z ) +ipβ.

Since Re{ f ( z ) z p }>0, therefore,

z f ( z ) f ( z ) =p+ z φ ( z ) φ ( z ) ,Reφ(z)>0.

This implies that

Re { 1 + z f ( z ) f ( z ) } (1α)p+αRe z g ( z ) g ( z ) |1αiβ|| z φ ( z ) φ ( z ) |σ| z ( z ψ ( z ) + ψ ( z ) ) 1 + σ z ψ ( z ) |.

Now, using the well-known results for classes S p , P and the Schwarz function [22], we have

Re { 1 + z f ( z ) f ( z ) } ( 1 α ) p + α p 1 r 1 + r | 1 α i β | 2 r ( 1 r 2 ) σ r ( 1 r ) ( 0 < σ 1 ) = ( 2 α p p σ ) r 2 ( 2 | 1 α i β | + 2 α p + σ ) r + p ( 1 r 2 ) .

Let P(r)=(2αppσ) r 2 (2|1αiβ|+2αp+σ)r+p. Since pN and 0<σ1, therefore, P(0)=p>0 and P(1)=2(|1αiβ|+σ)<0. It follows that the root lies in (0,1). This implies that Re{1+ z f ( z ) f ( z ) }>0 if r< R α , β , σ , where R α , β , σ is given by (2.10). □

For σ=1 and β=0, we have the following result which is proved in [12].

Corollary 2.10 Let f A p satisfy

Re { f ( z ) z p } >0and| z f ( z ) f ( z ) ( f ( z ) g ( z ) ) α p|<p,

g S p . Then f is p-valent convex in |z|< R α , where

R α = 3 + 2 α ( p 1 ) ( 3 + 2 α ( p 1 ) ) 2 4 p ( 2 α p p 1 ) 2 ( 2 α p p 1 ) .

Theorem 2.11 Let f A p satisfy

| z f ( z ) f ( z ) ( f ( z ) g ( z ) ) α p|<σp,

for g S p . Then, for α>0, f is p-valent 1 α -convex in |z|< R α , σ , where

R α , σ = 2 α p + σ ( 2 α p + σ ) 2 4 α p ( α p σ ) 2 ( α p σ ) .
(2.11)

Proof Let

h(z)= z f ( z ) p f ( z ) ( f ( z ) g ( z ) ) α 1,

where h(z) is analytic in E with h(0)=0 and |h(z)|<1. By using the Schwarz lemma, we get

h(z)=σzψ(z),

where ψ(z) is analytic in E with |ψ(z)|<1. Differentiating logarithmically, we have

1 α ( 1 + z f ( z ) f ( z ) ) + ( 1 1 α ) z f ( z ) f ( z ) = z g ( z ) g ( z ) + σ α z ( z ψ ( z ) + ψ ( z ) ) 1 + σ z ψ ( z ) .

This implies that

Re { 1 α ( 1 + z f ( z ) f ( z ) ) + ( 1 1 α ) z f ( z ) f ( z ) } Re z g ( z ) g ( z ) σ α | ( z ψ ( z ) + ψ ( z ) ) 1 + σ z ψ ( z ) |.

Now, using the well-known results for classes S p , and the Schwarz function, we have

Re 1 p { 1 α ( 1 + z f ( z ) f ( z ) ) + ( 1 1 α ) z f ( z ) f ( z ) } 1 r 1 + r σ r α p ( 1 r ) ( 0 < σ 1 ) = ( α p σ ) r 2 ( 2 α p + σ ) r + α p α ( 1 r 2 ) .

Let Q(r)=(αpσ) r 2 (2αp+σ)r+αp. Then for pN, α>0 and 0<σ1, Q(0)=αp>0 and Q(1)=2σ<0. It shows that the root lies in (0,1). This implies that Re{ 1 α (1+ z f ( z ) f ( z ) )+(1 1 α ) z f ( z ) f ( z ) }>0 if r< R α , σ , where R α , σ is given by (2.11). □

Theorem 2.12 Let fM(α,β,μ,A,B). Then E is mapped by f on a domain that contains the disc |w|< R α , β , μ (0,1), where

R α , β , μ = | α + i β + 1 | ( 1 + μ ) 2 | α + i β + 1 | ( 1 + μ ) + ( A B ) + 2 α ( 1 + μ ) .
(2.12)

Proof Let w 0 be any complex number such that f(z) w 0 . Then

w 0 f ( z ) w 0 f ( z ) =z+ ( a 2 + 1 w 0 ) z 2 +,

is univalent in E, so that

| a 2 + 1 w 0 |2.

Therefore,

| 1 w 0 || a 2 |2.

Hence,

w 0 | α + i β + 1 | ( 1 + μ ) 2 | α + i β + 1 | ( 1 + μ ) + ( A B ) + 2 α ( 1 + μ ) = R α , β , μ .

 □

For β=0, g(z)=z, A=12 ρ 1 , B=1, we have the following result proved in [13].

Corollary 2.13 Let fM(α,μ,ρ). Then E is mapped by f on a domain that contains the disc |w|< R α , μ , where

R α , β , μ = ( 1 + α ) ( 1 + μ ) 2 ( 1 + α ) ( 1 + μ ) + 2 ( 1 ρ 1 ) .

Theorem 2.14 Let α>0, cα 1 A 1 B and let fA. If

|arg z f ( z ) f ( z ) ( f ( z ) g ( z ) ) α ( f ( z ) z ) i β ρ|< π 2 υ(0<υ1,0ρ<1),
(2.13)

for some g S , then

|arg z F ( z ) F ( z ) ( F ( z ) G ( z ) ) α ( F ( z ) z ) i β ρ|< π 2 η(0<η1),
(2.14)

where

F(z)= [ c + α + i β z c 0 z t c 1 f α + i β ( t ) d t ] 1 α + i β ,
(2.15)

with

υ={ η + 2 π tan 1 ( ( 1 + B ) η sin ( π ( 1 t ( α , β , c , A , B ) ) / 2 ) | c + i β | ( 1 + B ) + α ( 1 + A ) + η ( 1 + B ) cos ( π ( 1 t ( α , β , c , A , B ) ) / 2 ) ) , B 1 , η , B = 1 ,
(2.16)

and

t(α,β,c,A,B)= 2 π sin 1 α ( A B ) + β ( 1 B 2 ) | c + i β | ( 1 B 2 ) + α ( 1 A B ) .
(2.17)

Proof Since

F α + i β (z)= c + α + i β z c 0 z t c 1 f α + i β (t)dt,

therefore,

z 1 i β F α + i β 1 (z) F (z)= 1 α + i β { ( c + α + i β ) z i β f α + i β ( z ) c z i β F α + i β ( z ) } .

Now using (1.5), we have

z F ( z ) F ( z ) ( F ( z ) G ( z ) ) α ( F ( z ) z ) i β = 1 α + i β { ( c + α + i β ) z c f α + i β ( z ) c z c F α + i β ( z ) } ( c + α + i β ) 0 z t c + i β 1 g α ( t ) d t .

Let

h(z)= 1 1 ρ ( z F ( z ) F ( z ) ( F ( z ) G ( z ) ) α ( F ( z ) z ) i β ρ ) = N ( z ) D ( z ) ,

where h(z) is analytic with h(0)=1. Now

N ( z ) D ( z ) = 1 1 ρ ( z f ( z ) f ( z ) ( f ( z ) g ( z ) ) α ( f ( z ) z ) i β ρ ) = h ( z ) { 1 + D ( z ) z D ( z ) z h ( z ) h ( z ) } ,

where

N ( z ) = 1 1 ρ ( 1 α + i β { ( c + α + i β ) z c f α + i β ( z ) c z c F α + i β ( z ) } ρ z c + i β 1 G α ( z ) ) , D ( z ) = ( c + α + i β ) 0 z t c + i β 1 g α ( t ) d t .

Since G S [A,B], therefore, we can write

z D ( z ) D ( z ) =c+iβ+α z G ( z ) G ( z ) = r 1 e i π 2 θ ,

where

{ | c + i β | + α 1 A 1 B < r 1 < | c + i β | + α 1 + A 1 + B , B 1 , t ( α , β , c , A , B ) < θ < t ( α , β , c , A , B ) , B 1 ,
(2.18)

similarly

{ | c + i β | + α 1 A 2 < r 1 < , B = 1 , 1 < θ < 1 , B = 1 .
(2.19)

Suppose that h(z)0 in E, there exists a point z 0 E such that |argh(z)|< π 2 η (|z|<| z 0 |) and |argh( z 0 )|= π 2 η. Now, using Lemma 1.10, we have z h ( z 0 ) h ( z 0 ) =ikη. At first suppose that h( z 0 )= ( i x ) η (x>0) for the case B1, we obtain

where υ and t(α,β,c,A,B) are given by (2.16) and (2.17) respectively. For B=1, we have

arg ( z 0 f ( z 0 ) f ( z 0 ) ( f ( z 0 ) g ( z 0 ) ) α ( f ( z 0 ) z 0 ) i β ρ ) π 2 η,

which is a contradiction to the assumption of our theorem. Now we suppose that h( z 0 )= ( i x ) η . For the case B1 using a similar method, we obtain

arg ( z 0 f ( z 0 ) f ( z 0 ) ( f ( z 0 ) g ( z 0 ) ) α ( f ( z 0 ) z 0 ) i β ρ ) π 2 υ,

and for B=1, we have

arg ( z 0 f ( z 0 ) f ( z 0 ) ( f ( z 0 ) g ( z 0 ) ) α ( f ( z 0 ) z 0 ) i β ρ ) π 2 η,

which is a contradiction to the assumption of our theorem. Hence, we have the proof. □

This kind of problem is also considered in [23]. For β=0, we have the following result proved in [24].

Corollary 2.15 Let α>0, cα 1 A 1 B and let fA. If

|arg ( z f ( z ) f ( z ) ( f ( z ) g ( z ) ) α ρ ) |< π 2 υ(0<υ1),

then

|arg ( z F ( z ) F ( z ) ( F ( z ) G ( z ) ) α ρ ) |< π 2 η(0<η1),

where

F(z)= [ c + α z c 0 z t c 1 f α ( t ) d t ] 1 α ,

with

υ={ η + 2 π tan 1 ( ( 1 + B ) η sin ( π ( 1 t ( α , β , c , A , B ) ) / 2 ) c ( 1 + B ) + α ( 1 + A ) + η ( 1 + B ) cos ( π ( 1 t ( α , β , c , A , B ) ) / 2 ) ) , B 1 , η , B = 1 ,

and

t(α,β,c,A,B)= 2 π sin 1 α ( A B ) c ( 1 B 2 ) + α ( 1 A B ) .

Remark 2.16 By using the suitable choices of parameters c, α, A and B, we can find many results proved in the literature.