1. Introduction

In the recent years applications of q-calculus in the area of approximation theory and number theory is an active area of research. Several researchers have proposed the q analogue of exponential, Kantorovich and Durrmeyer type operators. Also Kim [1, 2] used q-calculus in area of number theory. Recently, Gupta and Wang [3] proposed certain q-Durrmeyer operators in the case of real variables. The aim of the present article is to extend approximation results for such q-Durrmeyer operators to the complex case. The main contributions for the complex operators are due to Gal; in fact, several important results have been complied in his recent monograph [4]. Also very recently, Gal and Gupta [57] have studied some other complex Durrmeyer type operators, which are different from the operators considered in the present article.

We begin with some notations and definitions of q-calculus: For each nonnegative integer k, the q-integer [k] q and the q-factorial [k] q ! are defined by

[ k ] q : = ( 1 - q k ) / ( 1 - q ) , q 1 k , q = 1 ,

and

[ k ] q ! : = [ k ] q [ k - 1 ] q [ 1 ] q , k 1 1 , k = 0

respectively. For the integers n, k, nk ≥ 0, the q-binomial coefficients are defined by

n k q : = [ n ] q ! [ k ] q ! [ n - k ] q ! .

In this article, we shall study approximation results for the complex q-Durrmeyer operators (introduced and studied in the case of real variable by Gupta-Wang [3]), defined by

M n , q ( f ; z ) = [ n + 1 ] q k = 1 n q 1 - k p n , k ( q ; z ) 0 1 f ( t ) p n , k - 1 ( q ; q t ) d q t + f ( 0 ) p n , 0 ( q ; z ) ,
(1.1)

where z, n = 1, 2, . . . ; q ∈ (0, 1) and ( a - b ) q m = Π j = 0 m - 1 ( a - q j b ) , q-Bernstein basis functions are defined as

p n , k ( q ; z ) := n k q z k ( 1 - z ) q n - k

also in the above q-Beta functions [8] are given as

B q ( m , n ) = 0 1 t m - 1 ( 1 - q t ) q n - 1 d q t,m,n>0.

Throughout the present article we use the notation D R = { z : | z | < R } and by H(D R ), we mean the set of all analytic functions on f: D R with f ( z ) = k = 0 a k z k for all zD R . The norm ||f|| r = max{|f(z)| : |z|r}. We denote π p,n (q; z) = M n,q (e p ; z) for all e p = tp, p ∪ {0}.

In what follows, we shall study the approximation properties of the operators M n,q (f; z), which is extension of the results studied in [10]. Further, for these operators we will estimate an upper bound, a quantitative Voronovskaja-type asymptotic formula, and exact order of approximation on compact disks.

2. Basic results

To prove the results of following sections, we need the following basic results.

Lemma 1. Let q ∈ (0, 1). Then, π m,n (q; z) is a polynomial of degree ≤ min (m, n), and

π m , n ( q ; z ) = [ n + 1 ] q ! [ n + m + 1 ] q ! s = 1 m c s ( m ) [ n ] q s B n , q ( e s ; z ) ,

where c s (m) 0 are constants depending on m and q, and B n,q (f; z) is the q-Bernstein polynomials given by B n , q ( f ; z ) = k = 0 n p n , k ( q ; z ) f ( [ k ] q / [ n ] q ) .

Proof. By definition of q-Beta function, with B q ( m , n ) = [ m - 1 ] q ! [ n - 1 ] q ! [ m + n - 1 ] q ! , we have

π m , n ( q ; z ) = [ n + 1 ] q k = 1 n q 1 - k p n , k ( q ; z ) 0 1 p n , k - 1 ( q ; q t ) t m d q t = [ n + 1 ] q k = 1 n q 1 - k p n , k ( q ; z ) 0 1 n k - 1 q ( q t ) k - 1 ( 1 - q t ) q n - k + 1 t m d q t = [ n + 1 ] q k = 1 n p n , k ( q ; z ) [ n ] q ! [ k - 1 ] q ! [ n - k + 1 ] q ! B q ( k + m , n - k + 2 ) = [ n + 1 ] q ! [ n + m + 1 ] q ! k = 1 n p n , k ( q ; z ) [ k + m - 1 ] q ! [ k - 1 ] q ! .

For m =1, we find

π 1 , n ( q ; z ) = [ n + 1 ] q ! [ n + 2 ] q ! k = 1 n p n , k ( q ; z ) [ k ] q = 1 [ n + 2 ] q k = 0 n p n , k ( q ; z ) [ n ] q [ k ] q [ n ] q = 1 [ n + 2 ] q s = 1 1 [ n ] q s B n , q ( e s ; z ) ,

thus the result is true for m = 1 with c1(1) = 1 > 0.

Next for m = 2, with [k + 1] q = 1 + q[k] q , we get

π 2 , n ( q ; z ) = [ n + 1 ] q ! [ n + 3 ] q ! k = 0 n p n , k ( q ; z ) ( 1 + q [ k ] q ) [ k ] q = [ n + 1 ] q ! [ n + 3 ] q ! [ [ n ] q B n , q ( e 1 ; z ) + q [ n ] q 2 B n , q ( e 2 ; z ) ] = [ n + 1 ] q ! [ n + 3 ] q ! s = 1 2 c s ( 2 ) [ n ] q s B n , q ( e s ; z ) ,

thus the result is true for m = 2 with c1(2) = 1 > 0, c2(2) = q > 0.

Similarly for m = 3, using [k + 2] q = [2] q + q2[k] q and [k + 1] q = 1 + q[k] q we have

π 3 , n ( q ; z ) = [ n + 1 ] q ! [ n + 4 ] q ! s = 1 3 c s ( 3 ) [ n ] q s B n , q ( e s ; z ) ,

where c1(3) = [2] q > 0, c2(3) = 2q2 + q > 0, and c3(3) = q3 > 0.

Continuing in this way the result follows immediately for all mN. □

Lemma 2. Let q ∈ (0, 1). Then, for all m, n, we have the inequality

[ n + 1 ] q ! [ n + m + 1 ] q ! s = 1 m c s ( m ) [ n ] q s 1,

Proof. By Lemma 1, with e m = tm, we have

π m , n ( q ; 1 ) = [ n + 1 ] q ! [ n + m + 1 ] q ! s = 1 m c s ( m ) [ n ] q s B n , q ( e s ; 1 ) = [ n + 1 ] q ! [ n + m + 1 ] q ! s = 1 m c s ( m ) [ n ] q s .

Also

p n , k ( q ; z ) = n k q z k ( 1 - z ) ( 1 - q z ) ( 1 - q 2 z ) ( 1 - q n - k - 1 z ) .

It immediately follows that p n,k (q; 1) = 0, k = 0, 1, 2, . . . , n - 1 and p n,n (q; 1) = 1. Thus, we obtain

π m , n ( q ; 1 ) = [ n + 1 ] q p n , n ( q ; 1 ) q 1 - n 0 1 p n , n - 1 ( q ; q t ) t m d q t = [ n + 1 ] q 0 1 [ n ] q t n + m - 1 ( 1 - q t ) d q t = [ n + 1 ] q [ n ] q t n + m [ n + m ] q - q t n + m + 1 [ n + m + 1 ] q 0 1 = [ n + 1 ] q [ n ] q [ n + m ] q [ n + m + 1 ] q 1 .

Corollary 1. Let r ≥ 1 and q ∈ (0, 1). Then, for all m, n { 0 } and |z| ≤ r we have |π m,n (q; z)| ≤ rm.

Proof. By using the methods Gal [4], p. 61, proof of Theorem 1.5.6, we have |B n,q (e s ; z)| ≤ rs, By Lemma 2 and for all m and |z| ≤ r,

| π m , n ( q ; z ) | [ n + 1 ] q ! [ n + m + 1 ] q ! s = 1 m c s ( m ) [ n ] q s | B n , q ( e s ; z ) | [ n + 1 ] q ! [ n + m + 1 ] q ! s = 1 m c s ( m ) [ n ] q s r s r m .

Lemma 3. Let q ∈ (0, 1) then for z, we have the following recurrence relation:

π p + 1 , n ( q ; z ) = q p z ( 1 - z ) [ n + p + 2 ] q D q π p , n ( q ; z ) + q p [ n ] q z + [ p ] q [ n + p + 2 ] q π p , n ( q ; z ) .

Proof. By simple computation, we have

z ( 1 - z ) D q ( p n , k ( q ; z ) )  =  [ k ] q - [ n ] q z p n , k ( q ; z ),

and

t ( 1 - q t ) D q ( p n , k - 1 ( q ; q t ) ) = [ k - 1 ] q - [ n ] q q t p n , k - 1 ( q ; q t ) .

Using these identities, it follows that

z ( 1 - z ) D q ( π p , n ( q ; z ) ) = [ n + 1 ] q k = 1 n q 1 - k [ k ] q - [ n ] q z p n , k ( q ; z ) 0 1 p n , k - 1 ( q ; q t ) t p d q t = [ n + 1 ] q k = 1 n q 1 - k p n , k ( q ; z ) 0 1 1 + q [ k - 1 ] q - [ n ] q q 2 t + [ n ] q q 2 t p n , k - 1 ( q ; q t ) t p d q t - z [ n ] q [ n + 1 ] q k = 1 n q 1 - k p n , k ( q ; z ) 0 1 p n , k - 1 ( q ; q t ) t p d q t = q [ n + 1 ] q k = 1 n q 1 - k p n , k ( q ; z ) 0 1 ( D q p n , k - 1 ( q ; q t ) ) t ( 1 - q t ) t p d q t + π p , n ( q ; z ) + [ n ] q q 2 π p + 1 , n ( q ; z ) - z [ n ] q π p , n ( q ; z ) .

Let us denote δ ( t ) = t q ( 1 - t ) t q p = 1 q p + 1 ( t p + 1 - t p + 2 ) . Then, the last q-integral becomes

0 1 D q ( p n , k - 1 ( q ; q t ) ) t ( 1 - q t ) t p d q t = 0 1 D q ( p n , k - 1 ( q ; q t ) ) δ ( q t ) d q t = δ ( t ) p n , k - 1 ( q ; q t ) | 0 1 - 0 1 p n , k - 1 ( q ; q t ) D q δ ( t ) d q t = - q - p - 1 0 1 p n , k - 1 ( q ; q t ) D q ( t p + 1 - t p + 2 ) d q t = - q - p - 1 [ p + 1 ] q 0 1 p n , k - 1 ( q ; q t ) t p d q t + q - p - 1 [ p + 2 ] q 0 1 p n , k - 1 ( q ; q t ) t p + 1 d q t

and hence

z ( 1 - z ) D q π p , n ( q ; z ) = - q - p [ p + 1 ] q π p , n ( q ; z ) + q - p [ p + 2 ] q π p + 1 , n ( q ; z ) + π p , n ( q ; z ) + [ n ] q q 2 π p + 1 , n ( q ; z ) - z [ n ] q π p , n ( q ; z ) .

Therefore,

π p + 1 , n ( q ; z ) = z ( 1 - z ) q - p [ p + 2 ] q + [ n ] q q 2 D q π p , n ( q ; z ) + [ n ] q z + q - p [ p + 1 ] q - 1 q - p [ p + 2 ] q + [ n ] q q 2 π p , n ( q ; z ) = q p z ( 1 - z ) [ p + 2 ] q + [ n ] q q p + 2 D q π p , n ( q ; z ) + q p [ n ] q z + [ p ] q [ p + 2 ] q + [ n ] q q p + 2 π p , n ( q ; z ) .

Finally, using the identity [p + 2] q + [n] q qp+2 = [n + p + 2] q , we get the required recurrence relation. □

3. Upper bound

If P m (z) is a polynomial of degree m, then by the Bernstein inequality and the complex mean value theorem, we have

| D q P m ( z ) | | | P m | | r m r | | P m | | r for all | z | r .

The following theorem gives the upper bound for the operators (1.1).

Theorem 1. Let f ( z ) = p = 0 a p z p for all |z| < R and let 1 ≤ rR, then for all |z|r, q ∈ (0, 1) and n,

| M n , q ( f ; z ) -f ( z ) | K r ( f ) [ n + 2 ] q ,

where K r ( f ) = ( 1 + r ) p = 1 | a p | p ( p + 1 ) r p - 1 < .

Proof First, we shall show that M n , q ( f ; z ) = p = 0 a p π p , n ( q ; z ) . If we denote f m ( z ) = j = 0 m a j z j , | z | r with m, then by the linearity of M n,q , we have

M n , q ( f m ; z ) = p = 0 m a p π p , n ( q ; z ) .

Thus, it suffice to show that for any fixed n and |z| ≤ r with r ≥ 1, lim m→∞ M n,q (f m , z) = M n,q (f; z). But this is immediate from lim m→∞ ||f m - f|| r = 0 and by the inequality

| M n , q ( f m z ) -  M n , q ( f z )| | f m ( 0 ) - f ( 0 ) | . | ( 1 - z ) n | + [ n + 1 ] q k = 1 n | p n , k ( q ; z ) | q 1 - k 0 1 p n , k - 1 ( q , q t ) | f m ( t ) - f ( t ) | d q t C r , n | | f m - f | | r ,

where

C r , n = ( 1 + r ) n + [ n + 1 ] q k = 1 n n k q ( 1 + r ) n - k r k 0 1 p n , k - 1 ( q ; q t ) d q t .

Since, π0,n(q; z) = 1, we have

| M n , q ( f ; z ) - f ( z ) | p = 1 | a p | . | π p , n ( q ; z ) - e p ( z ) | .

Now using Lemma 3, for all p ≥ 1, we find

π p , n ( q ; z ) - e p ( z ) = q p - 1 z ( 1 - z ) [ n + p + 1 ] q D q ( π p - 1 , n ( q ; z ) ) + q p - 1 [ n ] q z + [ p - 1 ] q [ n + p + 1 ] q ( π p - 1 , n ( q ; z ) - e p - 1 ( z ) ) + q p - 1 [ n ] q z + [ p - 1 ] q [ n + p + 1 ] q z p - 1 - z p + q p - 1 z ( 1 - z ) [ n + p + 1 ] q D q ( π p - 1 , n ( q ; z ) ) + q p - 1 [ n ] q z + [ p - 1 ] q [ n + p + 1 ] q ( π p - 1 , n ( q ; z ) - e p - 1 ( z ) ) + [ p - 1 ] q [ n + p + 1 ] q z p - 1 + q p - 1 [ n ] q - [ n + p + 1 ] q [ n + p + 1 ] q z p .

However

q p - 1 [ n ] q - [ n + p + 1 ] q [ n + p + 1 ] q z p = q p - 1 [ n ] q - [ p - 1 ] q - q p - 1 [ n ] q - q n + p - 1 - q n + p [ n + p + 1 ] q z p [ p + 1 ] q [ n + p + 1 ] q r p .

Combining the above relations and inequalities, we find

| π p , n ( q ; z ) - e p ( z ) | r ( 1 + r ) [ n + 2 ] q p - 1 r π p - 1 , n ( q ; z ) r + r | π p - 1 , n ( q ; z ) - e p - 1 ( z ) | + [ p + 1 ] q [ n + 2 ] q r p - 1 ( 1 + r ) ( 1 + r ) ( p - 1 ) [ n + 2 ] q r p - 1 + r | π p - 1 , n ( q ; z ) - e p - 1 ( z ) | + [ p + 1 ] q [ n + 2 ] q r p - 1 ( 1 + r ) 2 p ( 1 + r ) [ n + 2 ] q r p - 1 + r | π p - 1 , n ( q ; z ) - e p - 1 ( z ) | .

From the last inequality, inductively it follows that

| π p , n ( q ; z ) - e p ( z ) | r r | π p - 2 , n ( q ; z ) - e p - 2 ( z ) | + 2 ( p - 1 ) [ n + 2 ] q ( 1 + r ) r p - 2 + 2 p ( 1 + r ) [ n + 2 ] q r p - 1 = r 2 | π p - 2 , n ( q ; z ) - e p - 2 ( z ) | + 2 ( 1 + r ) [ n + 2 ] q r p - 1 ( p - 1 + p ) ( 1 + r ) [ n + 2 ] q p ( p + 1 ) r p - 1 .

Thus, we obtain

| M n , q ( f ; z ) - f ( z ) | p = 1 | a p | | π p , n ( q ; z ) - e p ( z ) | 1 + r [ n + 2 ] q p = 1 | a p | p ( p + 1 ) r p - 1 .

which proves the theorem. □

Remark 1. Let q ∈ (0, 1) be fixed. Since, lim n 1 [ n + 2 ] q = 1 - q . Theorem 1, is not a convergence result. To obtain the convergence one can choose 0 < q n < 1 with q n 1 as n∞. In that case 1 [ n + 2 ] q n 0 as n∞(see Videnskii[9], formula(2.7)), from Theorem 1 we get M n , q n ( f ; z ) f ( z ) , uniformly for |z| ≤ r, and for any 1 ≤ r < R.

4. Asymptotic formula and exact order

Here we shall present the following quantitative Voronovskaja-type asymptotic result:

Theorem 2. Suppose that fH(D R ), R > 1. Then, for any fixed r ∈ [1, R] and for all n, |z| ≤ r and q ∈ (0, 1), we have

M n , q ( f ; z ) - f ( z ) - z ( 1 - z ) f ( z ) - 2 z f ( z ) [ n ] q M r ( f ) [ n ] q 2 +2 ( 1 - q ) k = 1 | a k |k r k ,

where M r ( f ) = k = 1 | a k | k B k , r r k < , and

B k , r = ( k - 1 ) ( k - 2 ) ( 2 k - 3 ) +8k ( k - 1 ) 2 +6 ( k - 1 ) k 2 ++4k ( k - 1 ) 2 ( 1 + r ) .

Proof. In view of the proof of Theorem 1, we can write M n , q ( f ; z ) = k = 0 a k π k , n ( q ; z ) . Thus

M n , q ( f ; z ) - f ( z ) - z ( 1 - z ) f ( z ) - 2 z f ( z ) [ n ] q k = 1 | a k | π k , n ( q ; z ) - e k ( z ) - ( k ( k - 1 ) - k ( k + 1 ) z ) z k - 1 [ n ] q ,

for all zD R , n. If we denote

E k , n ( q ; z ) = π k , n ( q ; z ) - e k ( z ) - ( k ( k - 1 ) - k ( k + 1 ) z ) z k - 1 [ n ] q ,

then E k,n (q; z) is a polynomial of degree ≤ k, and by simple calculation and using Lemma 3, we have

E k , n ( q ; z ) = q k - 1 z ( 1 - z ) [ n + k + 1 ] q D q E k - 1 , n ( q ; z ) + q k - 1 [ n ] q z + [ k - 1 ] q [ n + k + 1 ] q E k - 1 , n ( q ; z ) + X k , n ( q ; z ) ,

where

X k , n ( q ; z ) = z k 2 [ n ] q [ n + k + 1 ] q [ q k 1 ( k 1 ) ( k 2 ) [ k 2 ] q + [ k 1 ] q ( k 1 ) ( k 2 ) + z ( q k 1 [ n ] q [ k 1 ] q q k 1 ( k 1 ) ( k 2 ) [ k 2 ] q q k 1 k ( k 1 ) [ k 1 ] q + q k 1 [ n ] q ( k 1 ) ( k 2 ) + [ k 1 ] q [ n ] q [ k 1 ] q k ( k 1 ) k ( k 1 ) [ n + k + 1 ] q ) z 2 ( k ( k + 1 ) [ n + k + 1 ] q [ n ] q [ n + k + 1 ] q q k 1 [ n ] q k ( k 1 ) + q k 1 [ n ] q 2 + q k 1 k ( k 1 ) [ k 1 ] q q k 1 [ n ] q [ k 1 ] q ) ] = : z k 2 [ n ] q [ n + k + 1 ] q ( X 1 , q , n ( k ) + z X 2 , q , n ( k ) + z 2 X 3 , q , n ( k ) ) .

Obviously as 0 < q < 1, it follows that

| X 1 , q , n ( k ) | ( k - 1 ) ( k - 2 ) ( 2 k - 3 ) .

Next with [n + k + 1] q = [k - 1] q + qk-1[n] q + qn+k- 1+ qn+k, we have

X 2 , q , n ( k ) = [ n ] q q k - 1 [ k - 1 ] q + [ k - 1 ] q - 2 q k - 1 ( k - 1 ) - q k - 1 ( k - 1 ) ( k - 2 ) [ k - 2 ] q - q k - 1 k ( k - 1 ) [ k - 1 ] q - [ k - 1 ] q k ( k - 1 ) - k ( k - 1 ) [ k - 1 ] q - k ( k - 1 ) q n + k - 1 - k ( k - 1 ) q n + k

and

[ n ] q q k - 1 [ k - 1 ] q + [ k - 1 ] q - 2 q k - 1 ( k - 1 ) = [ n ] q q k - 1 ( [ k - 1 ] q - ( k - 1 ) ) + [ n ] q ( [ k - 1 ] q - q k - 1 ( k - 1 ) ) = [ n ] q q k - 1 ( q - 1 ) j = 0 k - 2 [ j ] q + [ n ] q ( 1 - q ) j = 1 k - 1 [ j ] q q k - 1 - j = q k - 1 ( q n - 1 ) j = 0 k - 2 [ j ] q + ( 1 - q n ) j = 1 k - 1 [ j ] q q k - 1 - j .

Thus,

| X 2 , q , n ( k ) | ( k - 1 ) [ k - 2 ] q + ( k - 1 ) [ k - 1 ] q  + ( k - 1)( k - 2 ) [ k - 2 ] q + k ( k - 1 ) [ k - 1 ] q + [ k - 1 ] q k ( k - 1 ) + k ( k - 1 ) [ k - 1 ] q + k ( k - 1) +  k ( k - 1) 8 k ( k - 1 ) 2 .

Now we will estimate X3,q,n(k):

X 3 , q , n ( k ) = k ( k + 1 ) [ n + k + 1 ] q - [ n ] q [ n + k + 1 ] q - q k - 1 [ n ] q k ( k - 1 ) + q k - 1 [ n ] q 2 + q k - 1 k ( k - 1 ) [ k - 1 ] q - q k - 1 [ n ] q [ k - 1 ] q = k ( k + 1 ) [ k - 1 ] q + q k - 1 [ n ] q + q n + k - 1 + q n + k - [ n ] q [ k - 1 ] q + q k - 1 [ n ] q + q n + k - 1 + q n + k - q k - 1 [ n ] q k ( k - 1 ) + q k - 1 [ n ] q 2 + q k - 1 k ( k - 1 ) [ k - 1 ] q - q k - 1 [ n ] q [ k - 1 ] q = k ( k + 1 ) [ k - 1 ] q + k ( k + 1 ) q n + k - 1 + q n + k - [ n ] q [ k - 1 ] q - [ n ] q q n + k - 1 + q n + k + 2 k q k - 1 [ n ] q + q k - 1 k ( k - 1 ) [ k - 1 ] q - q k - 1 [ n ] q [ k - 1 ] q = [ n ] q - q k - 1 [ k - 1 ] q - [ k - 1 ] q + q k - 1 ( 2 k ) - q n + k - 1 - q n + k + k ( k + 1 ) [ k - 1 ] q + k ( k + 1 ) ( q n + k - 1 + q n + k ) + q k - 1 k ( k - 1 ) [ k - 1 ] q = - [ n ] q q k - 1 ( [ k - 1 ] q - ( k - 1 ) ) + [ n ] q q k - 1 ( 1 - q n ) + [ n ] q ( k q k - 1 - [ k - 1 ] q - q n + k ) + k ( k + 1 ) [ k - 1 ] q + k ( k + 1 ) ( q n + k - 1 + q n + k ) + q k - 1 k ( k - 1 ) [ k - 1 ] q = - [ n ] q q k - 1 ( [ k - 1 ] q - ( k - 1 ) ) + [ n ] q q k - 1 ( 1 - q n ) - [ n ] q ( [ k - 1 ] q - ( k - 1 ) q k - 1 ) - [ n ] q ( q n + k - q k - 1 ) + k ( k + 1 ) [ k - 1 ] q + k ( k + 1 ) ( q n + k - 1 + q n + k ) + q k - 1 k ( k - 1 ) [ k - 1 ] q = - q k - 1 ( q n - 1 ) j = 0 k - 2 [ j ] q - ( 1 - q n ) j = 1 k - 1 [ j ] q q k - 1 - j + q k - 1 ( 1 - q n ) [ n ] q - [ n ] q ( q n + k - q k - 1 ) + k ( k + 1 ) [ k - 1 ] q + k ( k + 1 ) ( q n + k - 1 + q n + k ) + q k - 1 k ( k - 1 ) [ k - 1 ] q .

Hence, it follows that

| X 3 , q , n ( k ) | ( k - 1 ) [ k - 2 ] q + ( k - 1 ) [ k - 1 ] q + ( 1 - q n ) [ n ] q + ( 1 - q n + 1 ) [ n ] q + k ( k + 1 ) [ k - 1 ] q + 2 k ( k + 1 ) + k ( k - 1 ) [ k - 1 ] q 6 ( k - 1 ) k 2 + ( 1 - q n ) [ n ] q + ( 1 - q n + 1 ) [ n ] q .

Thus,

| X k , n ( q ; z ) | r k - 2 [ n ] q 2 ( ( k - 1 ) ( k - 2 ) ( 2 k - 3 ) + r 8 k ( k - 1 ) 2 + r 2 6 ( k - 1 ) k 2 ) + r k [ n ] q ( 1 - q n ) + r k [ n + 1 ] q ( 1 - q n + 1 ) = r k - 2 [ n ] q 2 ( ( k - 1 ) ( k - 2 ) ( 2 k - 3 ) + r 8 k ( k - 1 ) 2 + r 2 6 ( k - 1 ) k 2 ) + 2 r k ( 1 - q )

for all k ≥ 1, n and |z|r.

Next, using the estimate in the proof of Theorem 1, we have

| π k , n ( q ; z ) - e k ( z ) | ( 1 + r ) k ( k + 1 ) r k - 1 [ n + 2 ] q ,

for all k, n, | z | ≤ r, with 1 ≤ r.

Hence, for all k, n, k ≥ 1 and | z | ≤ r, we have

| E k , n ( q ; z ) | q k - 1 r ( 1 + r ) [ n + k + 1 ] q | E k - 1 n ( q ; z ) | + q k - 1 [ n ] q r + [ k - 1 ] q [ n + k + 1 ] q | E k - 1 , n ( q ; z ) | + | X k , n ( q ; z ) | .

However, since q k - 1 r ( 1 + r ) [ n + k + 1 ] q r ( 1 + r ) [ n + k + 1 ] q and q k - 1 [ n ] q r + [ k - 1 ] q [ n + k + 1 ] q r , it follows that

| E k , n ( q ; z ) | r ( 1 + r ) [ n + k + 1 ] q | E k - 1 , n ( q ; z ) |+r| E k - 1 , n ( q ; z ) |+| X k , n ( q ; z ) |.

Now we shall compute an estimate for | E k - 1 , n ( q z )| , k ≥ 1. For this, taking into account the fact that E k- 1, n (q; z) is a polynomial of degree ≤ k - 1, we have

| E k 1 , n ( q ; z ) | k 1 r | | E k 1 , n | | r k 1 r [ | | π k 1 , n e k 1 | | r + { ( k 1 ) ( k 2 ) k ( k 1 ) e 1 } e k 2 ] [ n ] q r ] k ( k 1 ) r [ ( 1 + r ) ( k 1 ) k r k 2 [ n + 2 ] q + r k 2 k ( k 1 ) ( 1 + r ) [ n ] q ] k ( k 1 ) 2 [ n ] q [ 2 r k 2 + 2 r k 2 ] = 4 k ( k 1 ) 2 r k 2 [ n ] q

Thus,

r ( 1 + r ) [ n + k + 1 ] q | E k - 1 , n ( q ; z ) | 4 k ( k - 1 ) 2 ( 1 + r ) r k - 1 [ n ] q 2

and

| E k , n ( q ; z ) | 4 k ( k - 1 ) 2 ( 1 + r ) r k [ n ] q 2 +r| E k - 1 , n ( q ; z ) |+| X k , n ( q ; z ) |,

where

| X k , n ( q ; z ) | r k [ n ] q 2 A k +2 r k ( 1 - q ) ,

for all | z | ≤ r, k ≥ 1, n, where

A k = ( k - 1 ) ( k - 2 ) ( 2 k - 3 ) +8k ( k - 1 ) 2 +6 ( k - 1 ) k 2 .

Hence, for all | z | ≤ r, k ≥ 1, n

| E k , n ( q ; z ) |r| E k - 1 , n ( q ; z ) |+ r k [ n ] q 2 B k , r +2 r k ( 1 - q ) ,

where B k,r is a polynomial of degree 3 in k defined as

B k , r = A k +4k ( k - 1 ) 2 ( 1 + r ) .

But E0,n(q; z) = 0, for any zC, and therefore by writing the last inequality for k = 1, 2, . . . we easily obtain step by step the following

| E k , n ( q ; z ) | r k [ n ] q 2 j = 1 k B j , r +2 r k ( 1 - q ) k r k [ n ] q 2 B k , r +2 r k k ( 1 - q ) .

Therefore, we can conclude that

M n , q ( f ; z ) - f ( z ) - z ( 1 - z ) f ( z ) - 2 z f ( z ) [ n ] q k = 1 | a k | | E k , n ( q ; z ) | 1 [ n ] q 2 k = 1 a k k B k , r r k + 2 ( 1 - q ) k = 1 | a k | k r k .

As f ( 4 ) ( z ) = k = 4 a k k ( k - 1 ) ( k - 2 ) ( k - 3 ) z k - 4 and the series is absolutely convergent in |z| ≤ r, it easily follows that k = 4 | a k | k ( k - 1 ) ( k - 2 ) ( k - 3 ) r k - 4 < , which implies that k = 1 | a k | k B k , r r k < . This completes the proof of theorem. □

Remark 2. For q ∈ (0, 1) fixed, we have 1 [ n ] q 1 - q as n∞, thus Theorem 2 does not provide convergence. But this can be improved by choosing 1 - 1 n 2 q n < 1 with q n 1 as n∞. Indeed, since in this case 1 [ n ] q n 0 as n → ∞ and 1- q n 1 n 2 1 [ n ] q n 2 from Theorem 2, we get

M n , q n ( f ; z ) - f ( z ) - z ( 1 - z ) f ( z ) - 2 z f ( z ) [ n ] q n M r ( f ) [ n ] q n 2 + 2 [ n ] q n 2 k = 1 | a k |k r k .

Our next main result is the exact order of approximation for the operator (1.1).

Theorem 3. Let 1 - 1 n 2 q n < 1 , n, R > 1, and let fH(D R ), R > 1. If f is not a polynomial of degree 0, then for any r ∈ [1, R), we have

|| M n , q n ( f ; ) -f| | r C r ( f ) [ n ] q n ,n,

where the constant C r (f) > 0 depends on f, r and on the sequence ( q n ) n , but it is inde-pendent of n.

Proof. For all z D R and n, we have

M n , q n ( f ; z ) - f ( z ) = 1 [ n ] q n z 1 - z f z - 2 z f z + 1 [ n ] q n [ n ] q n 2 M n , q n ( f ; z ) - f ( z ) - z ( 1 - z ) f ( z ) - 2 z f ( z ) [ n ] q n .

We use the following property.

| | F + G | | r | | | F | | r - | | G | | r | | | F | | r - | | G | | r .

to obtain

| | M n , q n ( f ; ) - f | | r 1 [ n ] q n | | e 1 ( 1 - e 1 ) f - 2 e 1 f | | r - 1 [ n ] q n [ n ] q n 2 M n , q n ( f ; ) - f - e 1 ( 1 - e 1 ) f - 2 e 1 f [ n ] q n r .

By the hypothesis, f is not a polynomial of degree 0 in D R , we get ||e1(1-e1)f"- 2e1 f'|| r > 0. Supposing the contrary, it follows that z(1 - z)f"(z) - 2zf'(z) = 0 for all |z|r, that is (1 - z)f"(z) - 2f'(z) = 0 for all | z|r with z ≠ 0. The last equality is equivalent to [(1 - z) f'(z)]' - f'(z) = 0, for all |z|r with z ≠ 0. Therefore, (1 - z) f'(z) - f(z) = C, where C is a constant, that is, f ( z ) = C z 1 - z , for all |z|r with z ≠ 0. But since f is analytic in D ̄ r and r ≥ 1, we necessarily have C = 0, a contradiction to the hypothesis.

But by Remark 2, we have

[ n ] q n 2 M n , q n ( f ; ) - f - e 1 ( 1 - e 1 ) f - 2 e 1 f [ n ] q n r M r ( f ) +2 k = 1 | a k |k r k ,

with 1 [ n ] q n 0 as n. Therefore, it follows that there exists an index n0 depending only on f, r and on the sequence (q n ) n , such that for all nn0, we have

| | e 1 (1{ e 1 ) f { 2 e 1 f | | r - 1 [ n ] q n [ n ] q n 2 M n , q n ( f ; ) - f - e 1 ( 1 - e 1 ) f - 2 e 1 f [ n ] q n r 1 2 | | e 1 ( 1 - e 1 ) f - 2 e 1 f | | r ,

which implies that

|| M n , q n ( f ; ) -f| | r 1 2 [ n ] q n || e 1 ( 1 - e 1 ) f -2 e 1 f | | r ,n n 0 .

For 1 ≤ nn0 - 1, we clearly have

|| M n , q n ( f ; ) -f| | r c r , n ( f ) [ n ] q n ,

where c r , n ( f ) = [ n ] q n || M n , q n ( f ; ) -f| | r >0, which finally implies

| | M n , q n ( f ; ) - f | | r C r ( f ) [ n ] q n , for all  n ,

where

C r ( f ) =min c r , 1 ( f ) , c r , 2 ( f ) , , c r , n 0 - 1 ( f ) , 1 2 | | e 1 ( 1 - e 1 ) f - 2 e 1 f | | r .

Combining Theorem 3 with Theorem 1 we get the following.

Corollary 2. Let 1 - 1 n 2 < q n < 1 for all n, R > 1, and suppose that fH(D R ). If f is not a polynomial of degree 0, then for any r ∈ [1, R), we have

|| M n , q n ( f ; ) -f| | r ~ 1 [ n ] q n ,n,

where the constants in the above equivalence depend on f, r, (q n ) n , but are independent of n.

The proof follows along the lines of [7].

Remark 3. For 0 ≤ α ≤ β, we can define the Stancu type generalization of the operators (1.1) as

M n , q α , β ( f ; z ) = [ n + 1 ] q k = 1 n q 1 - k p n , k ( q ; z ) 0 1 f [ n ] q t + α [ n ] q + β p n , k - 1 ( q ; q t ) d q t + f α [ n ] q + β p n , 0 ( q ; z ) .

The analogous results can be obtained for such operators. As analysis is different, it may be considered elsewhere.