Skip to main content

Evolutionary Potential and Requirements for Minimal Protocells

  • Chapter
  • First Online:
Prebiotic Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 259))

Abstract

Minimal protocell concepts have high intellectual and practical value. Following chemoton theory, developed by Tibor Gánti in 1971, we suggest that a minimal protocell satisfying all life criteria should consist of three subsystems: a metabolic network producing materials for the production of all three subsystems at the expense of the difference between food and waste products, a genetic subsystem based on template polymerization and a boundary subsystem consisting of a bilayer vesicle. All three subsystems are autocatalytic and the system as a whole (called chemoton) is also autocatalytic. The chemoton can undergo spatial reproduction in the right parameter domain. Various infrabiological systems can be constructed from any two subsystems; we review the experimental attempts aimed at such a goal. As the complexity of the realized systems increases, the problem of unwanted side reactions becomes more and more dramatic in non-enzymatic systems. No satisfactory solution to the problem of metabolite channeling is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AL:

artificial life

EC:

Enzyme Commission

GARD:

graded autocatalysis replication domain

PNA:

peptide nucleic acid

SCM:

stochastic corrector model

References

  1. Maynard Smith J (1986) The problems of biology. Oxford University Press, Oxford, UK

    Google Scholar 

  2. Maynard Smith J (1987) How to model evolution. In: Dupré J (ed) The latest on the best: essays on evolution and optimality. MIT Press, Cambridge, MA, pp 119–31

    Google Scholar 

  3. Dawkins R (1976) The selfish gene. Oxford University Press, Oxford, UK

    Google Scholar 

  4. Gánti T (1971) Az élet princípuma (The principle of life), 1st ed. Gondolat, Budapest, Hungary

    Google Scholar 

  5. Gánti T (2003) The principles of life. Oxford University Press, Oxford, UK

    Google Scholar 

  6. Szathmáry E (2002) Units of evolution and units of life. In: Pályi G, Zucchi L, Caglioti L (eds) Fundamentals of Life. Elsevier, Paris, pp 181–195

    Google Scholar 

  7. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford, UK

    Google Scholar 

  8. Gilbert W (1986) Nature 319:618

    Article  Google Scholar 

  9. Bernal JD (1967) The origin of life. Weidenfield, Nicolson, London

    Google Scholar 

  10. Wächtershäuser G (1988) Microbiol Rev 52:452

    PubMed  Google Scholar 

  11. Wächtershäuser G (1992) Prog Biophys Mol Biol 58:85

    Article  PubMed  Google Scholar 

  12. Franchi M, Gallori E (2004) Orig Life Evol Biosph 34:133

    Article  PubMed  Google Scholar 

  13. Scheuring I, Czárán T, Szabó P, Károlyi G, Toroczkai Z (2003) Orig Life Evol Biosph 33:319

    Article  PubMed  Google Scholar 

  14. Wade MJ (1978) Quart Rev Biol 53:101

    Article  Google Scholar 

  15. Boorman SA, Levitt PR (1980) The genetics of altruism. Academic Press, New York

    Google Scholar 

  16. Gánti T (1978) Az élet princípuma (The principle of life), 2nd (revised) ed. Gondolat, Budapest, Hungary

    Google Scholar 

  17. Szostak JW, Bartel DP, Luisi PL (2001) Nature 409:387

    Article  PubMed  Google Scholar 

  18. Pohorille A, Deamer D (2002) Trends Biotechnol 20:123

    Article  PubMed  Google Scholar 

  19. Szathmáry E (2003) The biological significance of Gánti's work in 1971 and today. In: Gánti T (ed) The principles of life. Oxford University Press, Oxford, UK, pp 157–168

    Google Scholar 

  20. Gánti T (1974) Biológia 22:17

    Google Scholar 

  21. Cavalier-Smith T (2000) Trends Plant Sci 5:174

    Article  PubMed  Google Scholar 

  22. Szathmáry E (2000) Phil Trans R Soc Lond B 355:1669

    Article  Google Scholar 

  23. Segré D, Ben-Eli D, Deamer DW, Lancet D (2001) Orig Life Evol Biosph 31:119

    Article  PubMed  Google Scholar 

  24. Segré D, Ben-Eli D, Lancet D (2000) Proc Natl Acad Sci USA 97:4112

    Article  PubMed  Google Scholar 

  25. Kauffman SA (1986) J Theor Biol 119:1

    PubMed  Google Scholar 

  26. Lee DH, Severin K, Yokobayashi Y, Ghadiri MR (1997) Nature 390:591. Erratum (1998) Nature 394:101

    Article  PubMed  Google Scholar 

  27. Fendler HJ, Fendler EJ (1975) Catalysis in micellar and macromolecular systems. Academic Press, New York

    Google Scholar 

  28. Lancet D, Sadovsky E, Seidemann E (1993) Proc Natl Acad Sci USA 90:3715

    PubMed  Google Scholar 

  29. Hogeweg P (1998) On searching generic properties of non generic phenomena: an approach to bioinformatic theory formation. In: Adami C, Belew RK, Kitano H, Taylor CE (eds) Artificial life VI. MIT Press, Cambridge MA, pp 285–294

    Google Scholar 

  30. Segré D, Shenhav B, Kafri R, Lancet D (2001) J Theor Biol 213:481

    Article  PubMed  Google Scholar 

  31. Luisi PL, Stano P, Rasi S, Mavelli F (2004) Artif Life 10:297

    Article  PubMed  Google Scholar 

  32. Rashevsky N (1938) Mathematical biophysics. University of Chicago Press, Chicago

    Google Scholar 

  33. Gánti T, Gáspár C (1978) Acta Chim Acad Sci Hung 98:278

    Google Scholar 

  34. Verhás J (1989) Appendix. In: Gánti T (ed) Chemoton elmélet II (Chemoton theory Vol 2). OMIKK, Budapest, Hungary, pp 201–216

    Google Scholar 

  35. Tarumi K, Schwegler H (1987) Bull Math Biol 49:307

    Article  PubMed  Google Scholar 

  36. Božič B, Svetina S (2004) Eur Biophys J 33:565

    Article  PubMed  Google Scholar 

  37. Kaler WK, Murthy AK, Rodríguez BE, Zasadzinski JAN (1989) Science 245:1371

    PubMed  Google Scholar 

  38. Lipowsky R (1991) Nature 349:475

    Article  PubMed  Google Scholar 

  39. Rokhsar DS, Anderson PW, Stein DL (1986) J Mol Evol 23:119

    Article  PubMed  Google Scholar 

  40. Döbereiner H-G, Käs J, Noppl D, Sprenger I, Sackmann E (1993) Biophys J 65:1396

    PubMed  Google Scholar 

  41. Luisi PL, Walde P, Oberholzer T (1999) Curr Op Coll Interf Sci 4:33

    Article  Google Scholar 

  42. Bachmann PA, Luisi PL, Lang J (1992) Nature 357:57

    Article  Google Scholar 

  43. Blöchliger E, Blocher M, Walde P, Luisi PL (1998) J Phys Chem 102:10383

    Google Scholar 

  44. Rasi PS, Mavelli F, Luisi PL (2004) Orig Life Evol Biosph 34:243

    Article  PubMed  Google Scholar 

  45. Berclaz N, Müller M, Walde P, Luisi PL (2001) J Phys Chem B 105:1056

    Article  Google Scholar 

  46. Berclaz N, Blöchliger E, Müller M, Luisi PL (2001) Phys J Chem B 105:1065

    Article  Google Scholar 

  47. Walde P, Goto A, Monnard PA, Wessicken, Luisi PL (1994) J Am Chem Soc 116:7541

    Article  Google Scholar 

  48. Walde P, Wick R, Fresta M, Mangone A, Luisi PL (1994) J Am Chem Soc 116:11649

    Article  Google Scholar 

  49. Oberholzer T, Wick R, Luisi PL, Biebricher CK (1995) Biochem Biophys Res Commun 207:250

    Article  PubMed  Google Scholar 

  50. Oberholzer T, Albrizio M, Luisi PL (1995) Chem Biol 2:677

    Article  PubMed  Google Scholar 

  51. Hitz T, Luisi PL (2000) Biopolymers 55:381

    Article  PubMed  Google Scholar 

  52. Mavelli F, Luisi PL (1996) J Phys Chem 100:16600

    Article  Google Scholar 

  53. Hanczyc MM, Fujikawa SM, Szostak JW (2003) Science 302:618

    Article  PubMed  Google Scholar 

  54. Chen IA, Roberts RW, Szostak JW (2004) Science 305:1474

    Article  PubMed  Google Scholar 

  55. Rasmussen S, Chen L, Nilsson M, Abe S (2003) Artif Life 9:269

    Article  PubMed  Google Scholar 

  56. Rasmussen SJ, Chen L, Stadler BM, Stadler PF (2004) Orig Life Evol Biosph 34:171

    Article  PubMed  Google Scholar 

  57. Nielsen PE (1993) Orig Life Evol Biosph 23:323

    Article  PubMed  Google Scholar 

  58. Szathmáry E, Gladkih I (1989) J Theor Biol 138:55

    PubMed  Google Scholar 

  59. Stillwell W (1976) Biosystems 8:111

    Article  PubMed  Google Scholar 

  60. Stillwell W, Rau A (1981) Orig Life 11:243

    Article  PubMed  Google Scholar 

  61. Chakrabarti AC, Deamer DW (1994) J Mol Evol 39:1

    PubMed  Google Scholar 

  62. Chen IA, Szostak JW (2004) Proc Natl Acad Sci USA 101:7965

    Article  Google Scholar 

  63. Eigen M (1971) Naturwissenschaften 58:465

    Article  PubMed  Google Scholar 

  64. Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Washington

    Google Scholar 

  65. Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) Science 292:1319

    Article  PubMed  Google Scholar 

  66. Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, Berlin Heidelberg New York

    Google Scholar 

  67. Eigen M, Schuster P (1982) J Mol Evol 19:47

    Article  PubMed  Google Scholar 

  68. Nowak MA (1992) Trends Ecol Evol 7:118

    Article  Google Scholar 

  69. Alves D, Fontanari JF (1998) Phys Rev E 57:7008

    Article  Google Scholar 

  70. Eigen M, Schuster P (1978) Naturwissenschaften 65:341

    Article  Google Scholar 

  71. Zintzaras E, Santos M, Szathmáry E (2002) J Theor Biol 217:167

    Article  PubMed  Google Scholar 

  72. Nuño JC, Tarazona P (1994) Bull Math Biol 56:875

    Article  Google Scholar 

  73. Boerlijst MC, Hogeweg P (1991) Physica D 48:17

    Google Scholar 

  74. Maynard Smith J (1979) Nature 280:445

    Article  PubMed  Google Scholar 

  75. Eigen M, Schuster P, Gardiner W, Winkler-Oswatitsch R (1981) Sci Am 244:78

    Google Scholar 

  76. Bresch C, Niesert U, Harnasch D (1980) J Theor Biol 85:399

    Article  PubMed  Google Scholar 

  77. Luisi PL (1998) Orig Life Evol Biosph 28:613

    Article  PubMed  Google Scholar 

  78. Matsuura T, Yamaguchi M, Ko-Mitamura EP, Shima Y, Urabe I (2002) Proc Nat Acad Sci USA 99:7514

    Article  PubMed  Google Scholar 

  79. Szathmáry E (2003) Orig Life Evol Biosph 33:313

    Article  PubMed  Google Scholar 

  80. Niesert U, Harnasch D, Bresch C (1981) J Mol Evol 17:348

    Article  PubMed  Google Scholar 

  81. Szathmáry E, Demeter L (1987) J Theor Biol 128:463

    PubMed  Google Scholar 

  82. Niesert U (1987) Orig Life 17:155

    Article  Google Scholar 

  83. Suzuki H, Ono N (2003) Proc First Australian Conf Artif Life (ACAL-2003)

    Google Scholar 

  84. Santos M, Zintzaras E, Szathmáry E (2003) Orig Life Evol Biosph 33:405

    Article  PubMed  Google Scholar 

  85. Fontanari JF, Santos M, Szathmáry E (2005) J Theor Biol (in press)

    Google Scholar 

  86. Hogeweg P, Takeuchi N (2003) Orig Life Evol Biosph 33:375

    Article  PubMed  Google Scholar 

  87. Lehman N (2003) J Mol Evol 56:770

    Article  PubMed  Google Scholar 

  88. Chetverina HV, Demidenko AA, Ugarov VI, Chetverin (1999) FEBS Lett 450:89

    Article  PubMed  Google Scholar 

  89. Riley CA, Lehman N (2003) Chem Biol 10:1233

    Article  PubMed  Google Scholar 

  90. Santos M, Zintzaras E, Szathmáry E (2004) J Mol Evol 53:507

    Article  Google Scholar 

  91. Temin HM (1993) Proc Natl Acad Sci USA 90:6900

    PubMed  Google Scholar 

  92. Negroni M, Buc H (2000) Proc Natl Acad Sci USA 97:6385

    Article  PubMed  Google Scholar 

  93. Hwang CK, Svarovskaia ES, Pathak VK (2001) Proc Natl Acad Sci USA 98:12209

    Article  PubMed  Google Scholar 

  94. Moumen A, Polomack L, Roques B, Buc H, Negroni M (2001) Nucl Acids Res 29:3814

    Article  PubMed  Google Scholar 

  95. Cheng CP, Nagy PD (2003) J Virol 77:12 033

    Google Scholar 

  96. Cavalier-Smith T (2002) Heredity 88:125

    Article  PubMed  Google Scholar 

  97. Maynard Smith J, Szathmáry E (1993) J Theor Biol 164:437

    Article  PubMed  Google Scholar 

  98. Koch AL (1984) J Mol Evol 20:71

    Article  PubMed  Google Scholar 

  99. Ohno S (1979) Evolution by gene duplication. Springer, Berlin Heidelberg New York

    Google Scholar 

  100. Prescott DM (1994) Microbiol Rev 58:233

    PubMed  Google Scholar 

  101. Summers D (1998) Mol Microbiol 29:1137

    Article  PubMed  Google Scholar 

  102. Zhang Z, Cavallier-Smith T, Green BR (2002) Mol Biol Evol 19:489

    Google Scholar 

  103. Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D (2004) Curr Biol 14:213

    Article  PubMed  Google Scholar 

  104. Baird SE, Klobutcher LA (1991) J Protozool 38:136

    PubMed  Google Scholar 

  105. Skovorodkin IN, Zassoukhina IB, Hojak S, Ammermann D, Gunzl A (2001) Chromosoma 110:352

    PubMed  Google Scholar 

  106. Weiner AM, Maizels N (1987) Proc Natl Acad Sci USA 84:383

    PubMed  Google Scholar 

  107. Paulsson J (2002) Genetics 161:1373

    Google Scholar 

  108. Michod RE, Levin BR (1988) The evolution of sex: an examination of current ideas. Sinauer, Sunderland, MA

    Google Scholar 

  109. Hamilton WD, Axelrod R, Tanese R (1990) Proc Natl Acad Sci USA 87:3566

    PubMed  Google Scholar 

  110. Woese C (1998) Proc Natl Acad Sci USA 95:6854

    Article  PubMed  Google Scholar 

  111. Rivera MC, Lake JA (2004) Nature 431:152

    Article  PubMed  Google Scholar 

  112. Koonin EV (2000) Annu Rev Genomics Hum Genet 1:99

    Article  PubMed  Google Scholar 

  113. Gil R, Silva FJ, Peretó J, Moya A (2004) Microb Mol Biol Rev 68:518

    Article  Google Scholar 

  114. Oparin AI (1924) Proiskhozdenie zhizni. Izd. Moskovshii Rabochii, Moscow. English translation by Synge A, printed In: Bernal JD (ed) (1967) The origin of life. Weidenfeld, Nicholson London. World Publishing Co Cleveland, New York, pp 199–234

    Google Scholar 

  115. Haldane JBS (1929) The origin of life. The Rationalist Annual. Reprinted in: Bernal JD (ed) (1967) The origin of life. World Publishing Co, Cleveland, New York, pp 242–249

    Google Scholar 

  116. Farmer JD, Kauffman SA, Packard NH (1986) Physica 22D:50

    MathSciNet  Google Scholar 

  117. Fox SW (1965) Nature 205:336

    Google Scholar 

  118. Kleidon A (2004) Climatic Change 66:271

    Article  Google Scholar 

  119. Dyson FJ (1999) Origins of life. Cambridge Univ Press, Cambridge

    Google Scholar 

  120. Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley, New York

    Google Scholar 

  121. Deamer DW (1987) Microbiol Mol Biol Rev 61:239

    Google Scholar 

  122. Morowitz H (1977) Adv Biol Med Phys 16:151

    PubMed  Google Scholar 

  123. Saier MH (2000) J Bacter 182:5029

    Article  Google Scholar 

  124. King GAM (1982) Biosystems 15:89

    Article  PubMed  Google Scholar 

  125. Ganti T (2004) Chemoton theory, Vol I & Vol II. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  126. King GAM (1977) Orig Life 8:38

    Article  Google Scholar 

  127. King GAM (1978) Chem Soc Rev 7:297

    Article  Google Scholar 

  128. Kalapos MP (1999) Exp Mol Med 31:1

    PubMed  Google Scholar 

  129. Schuster P (2000) Proc Natl Acad Sci USA 97:7678

    Article  PubMed  Google Scholar 

  130. Smith E, Morowitz HJ (2004) Proc Natl Acad Sci USA 101:13 168

    Google Scholar 

  131. Butlerow A (1861) Ann Chem 120:295

    Google Scholar 

  132. Decker P, Schweer H, Pohlmann R (1982) J Chrom 244:281

    Article  Google Scholar 

  133. Mizano T, Weiss AH (1974) Adv Carbohyd Chem Biochem 29:173

    Google Scholar 

  134. Socha R, Weiss AH, Sakharow MM (1980) React Kinet Catal Lett 14:119

    Article  Google Scholar 

  135. Breslow R (1959) Tetrahedron Lett 21:22

    Article  Google Scholar 

  136. Orgel L (2004) Crit Rev Bioch Molr Biol 39:99

    Article  Google Scholar 

  137. Hanczyc MM, Fujikawa SM, Szostak JW (2003) Science 302:618

    Article  PubMed  Google Scholar 

  138. Pohorille A, New N (2002) Models of protocellular structures, functions and evolution (Abstract). In: Proc of the XIIth Rencontres de Blois: Frontiers of Life Conference, 2000, Chateau de Blois, France

    Google Scholar 

  139. Cunchillos C, Lecointre G (2003) J Biol Compl 278:47 960

    Google Scholar 

  140. Horowitz NH (1945) Proc Natl Acad Sci USA 31:153

    Google Scholar 

  141. Melendez-Hevia E, Waddell TG, Cascante M (1996) J Mol Evol 43:293

    PubMed  Google Scholar 

  142. Jensen RA (1976) Annu Rev Microbiol 30:409

    Article  PubMed  Google Scholar 

  143. Light S, Kraulis P (2004) BMC Bioinformatics 5:15 (doi:10.1186/1471-2105-5-15)

    Google Scholar 

  144. Benner SA, Ellington AD, Tauer A (1989) Proc Natl Acad Sci USA 86:7054

    PubMed  Google Scholar 

  145. Jeong H, Tombor B, Albert R, Oltval ZN, Barabasi AL (2000) Nature 407:651

    Article  PubMed  Google Scholar 

  146. Wagner A, Fell DA (2000) Santa Fe Institute Tech Rep 00-07-041

    Google Scholar 

  147. Barabási AL (1999) Los Alamos Nat Lab Prep cond-mat/9907068

    Google Scholar 

  148. Papp B, Pal C, Hurst LD (2004) Nature 429:661

    Article  PubMed  Google Scholar 

  149. Ruiz-Mirazo, Moreno A (2004) Artif Life 10:235

    Article  PubMed  Google Scholar 

  150. Von Kiedrowski G (1986) Angew Chem Int Ed 25:932

    Google Scholar 

  151. Von Kiedrowski G (1993) Bioorg Chem Front 3:113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eörs Szathmáry .

Editor information

Peter Walde

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Szathmáry, E., Santos, M., Fernando, C. Evolutionary Potential and Requirements for Minimal Protocells. In: Walde, P. (eds) Prebiotic Chemistry. Topics in Current Chemistry, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/tcc001

Download citation

Publish with us

Policies and ethics