Skip to main content
Log in

Application of Quintic Displacement Function in Static Analysis of Deep Beams on Elastic Foundation

  • Original Paper
  • Published:
Architecture, Structures and Construction Aims and scope Submit manuscript

Abstract

Beams supported by elastic foundations are one of the complex soil-structure interaction problems that have been studied using the "beam on elastic foundation" concept. To support the loads, the structural foundation and the soil continuum must work together. The development of more accurate foundation model and simpler procedure are critical for the safety and cost-effective construction of such type of structure. Three nodded beams based on Timoshenko beam theory and workable approaches for analysis of beams on Winkler foundation are attempted in this study. For the present formulation, a Matlab code has been developed. The results are then compared to similar studies done by other researchers, which demonstrate a high level of agreement. Parametric studies are followed to determine the response to various loading conditions, boundary conditions, and foundation parameters. The present formulations, regardless of boundary conditions, slenderness ratio and modulus of sub-grade reaction, have a higher convergence rate. It functions smoothly and efficiently for thin to moderately thick beams. The influence of the soil coefficient on the response of beams on elastic foundations is typically greater than the influence of beam physical and material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Winkler E (1867) Die Lehre von der Elastizitat und Festigkeit, Dominicus, Prague

  2. Hetenyi M (1950) A general solution for the bending on an elastic foundation of arbitrary continuity. J Appl Phys 21:55–58

    Article  Google Scholar 

  3. Hetenyi M (1946) Beams on Elastic Foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering. Univ. of Michigan Press, Ann Arbor

    Google Scholar 

  4. Parvanova S (2011) Beams on elastic foundation. Lect Notes Struct Anal II, University of Architecture, Civil Engineering and Geodesy - Sofia pp 111–125

  5. Ephraim ME, Ode T, Promise ND (2018) Application of three nodded finite element beam model to beam on elastic foundation. 6: 68–77. https://doi.org/10.11648/j.ajce.20180602.13

  6. Chen J, Feng Y, Shu W (2015) an improved solution for beam on elastic foundation using quintic displacement functions. KSCE J Civ Eng 00:1–11. https://doi.org/10.1007/s12205-015-0424-y

    Article  Google Scholar 

  7. Chen WQ, Lü CF, Bian ZG (2004) A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. 28: 877–890. https://doi.org/10.1016/j.apm.2004.04.001

  8. Wang CM, Lam KY, He XQ (1998) Exact solutions for timoshenko beams on elastic foundations using green’s functions*. Mech Struct Mach An Int J 26:101–113. https://doi.org/10.1080/08905459808945422

    Article  Google Scholar 

  9. Akin JE (n.d.) Quintic beam closed form matrices (revised 4/14/14), 1–11

  10. Dutta AK, Mandal JJ, Bandyopadhyay D (2021) Analysis of beams on Pasternak foundation using quintic displacement functions. Geotech Geol Eng 39:4213–4224. https://doi.org/10.1007/s10706-021-01752-9

    Article  Google Scholar 

  11. Sreelakshmi G, Asha MN, Thejus L (2021) Interfacial studies on different pile materials and their roughness characterisation using 3D optical profilometer. Archit Struct Constr. https://doi.org/10.1007/s44150-021-00002-z

    Article  Google Scholar 

  12. M. Inc (2011) The Language of Technical Computing MATLAB 2011b

  13. Terzaghi K (1955) Evaluation of coefficients of subgrade reaction. Geotechnique 5:297–326

    Article  Google Scholar 

  14. Bowles JE (1996) Foundation Analysis and design. McGraw-Hill, New York.

    Google Scholar 

  15. Biot MA (1937) Bending of an infinite beam on an elastic foundation. J Appl Phys 12(2):155–164. https://doi.org/10.1063/1.1712886

    Article  Google Scholar 

  16. Vesić AS (1961) Bending of beams resting on isotropic elastic solid. J Eng Mech Div ASCE 87:35–53

    Article  Google Scholar 

  17. Galin LA (1943) On the Winkler-Zimmermann hypothesis for beams. Prikl Mat Mekh 7:293–300

    MATH  Google Scholar 

  18. Lenczner D (1962) Bending moments and pressures on model footings. I Concr Constr Eng 57:181–187

    Google Scholar 

  19. Friedman Z, Kosmatka JB (1993) An improved two-node timoshenko beam finite element. Comput Struct 47:473–481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Kumar Dutta.

Ethics declarations

Competing interest

The authors declare that they have no Competing interest.

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A

Development of governing differential equation

$$\therefore \begin{array}{c}\begin{array}{c}{\varepsilon }_{xx}=\frac{\partial u}{\partial x}=-z\frac{\partial {\theta }_{x}}{\partial x}\end{array}\end{array} ;{\gamma }_{xz}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}={-\theta }_{x}+\frac{\partial w}{\partial x};$$

The strain energy deformation in Timoshenko Beam corresponding to bending and shear deformation is

$$\mathrm{Strain\; energy},{ U }=\frac{1}{2}{{\upsigma }_{{ij}}\upvarepsilon }_{{ij}}{dV}=\frac{1}{2}{{\upsigma }_{{ij}}\upvarepsilon }_{{ij}}{dxdydz}=\frac{1}{2}\int \int \int \left({{\upsigma }_{{x}}\upvarepsilon }_{{x}}+{\uptau }_{{zx}}{\upgamma }_{{xz}}\right){dxdydz}$$
$${\mathrm{U}}_{\mathrm{b}} =\frac{1}{2}{\int }_{0}^{\mathrm{L}}{\int }_{-\frac{\mathrm{h}}{2}}^{\frac{\mathrm{h}}{2}}\left[{\mathrm{Ez}}^{2}{\left(\frac{\partial {\uptheta }_{\mathrm{x}}}{\partial \mathrm{x}}\right)}^{2}+{\mathrm{\alpha G}\left(-{\uptheta }_{\mathrm{x}}+\frac{\partial \mathrm{w}}{\partial \mathrm{x}}\right)}^{2}\right]bdxdz$$
$$\therefore {\mathrm{U}}_{\mathrm{b}} =\frac{\mathrm{E}}{2}{\int }_{0}^{\mathrm{L}}{\int }_{-\frac{\mathrm{h}}{2}}^{\frac{\mathrm{h}}{2}}{\mathrm{z}}^{2}{\left(\frac{\partial {\uptheta }_{\mathrm{x}}}{\partial \mathrm{x}}\right)}^{2}bdzdx+{\int }_{0}^{\mathrm{L}}{\int }_{-\frac{\mathrm{h}}{2}}^{\frac{\mathrm{h}}{2}}{\frac{\mathrm{\alpha {\rm A}}\mathrm{G}}{2}\left(-{\uptheta }_{\mathrm{x}}+\frac{\partial \mathrm{w}}{\partial \mathrm{x}}\right)}^{2}bdzdx$$

where E – is the Young’s modulus of beam material, I- is the second moment of inertia of the beam section G—is the modulus rigidity of beam material, b – is the beam width and α – is the shear correction factor.

$${{U}}_{{b}} =\frac{{EI}}{2}{\int }_{0}^{{L}}{\left(\frac{\partial {\uptheta }_{{x}}}{\partial {x}}\right)}^{2}dx+\frac{{\alpha AG}}{2}{\int }_{0}^{{L}}{\left(-{\uptheta }_{{x}}+\frac{\partial {w}}{\partial {x}}\right)}^{2}dx;A-is\; the\; cross\; sectional\; area\; of\; the\; beam.$$
$$\Pi =\frac{{EI}}{2}{\int }_{0}^{{L}}{\left(\frac{\partial {\uptheta }_{{x}}}{\partial {x}}\right)}^{2}dx+\frac{{\alpha AG}}{2}{\int }_{0}^{{L}}{\left(-{\uptheta }_{{x}}+\frac{\partial {w}}{\partial {x}}\right)}^{2}dx+\frac{1}{2}{\int }_{0}^{{L}}{{kw}}^{2}\mathrm{dx}-{\int }_{0}^{{L}}{qwdx}$$

Now, to obtain the equilibrium equations, we can use the calculus of variations. The first variation of the potential energy must be zero (δΠ = 0) in order for a stable equilibrium state to be achieved. From 0 to L we consider the first beam soil system and take variations on w. We get the following by making variations on w.

$$\mathrm{F}=\frac{\mathrm{EI}}{2}{\left(\frac{\partial {\uptheta }_{\mathrm{x}}}{\partial \mathrm{x}}\right)}^{2}+\frac{\mathrm{\alpha AG}}{2}{\left(-{\uptheta }_{\mathrm{x}}+\frac{\partial \mathrm{w}}{\partial \mathrm{x}}\right)}^{2}+\frac{1}{2}{\mathrm{kw}}^{2}-\mathrm{qw}$$
$$\mathrm{F}=\frac{\mathrm{EI}}{2}{\left(\frac{\partial {\uptheta }_{\mathrm{x}}}{\partial \mathrm{x}}\right)}^{2}+\frac{\mathrm{\alpha AG}{{\uptheta }_{\mathrm{x}}}^{2}}{2}-\mathrm{KAG}{\uptheta }_{\mathrm{x}}\frac{\partial \mathrm{w}}{\partial \mathrm{x}}+\frac{\mathrm{\alpha AG}}{2}{\left(\frac{\mathrm{dw}}{\mathrm{dx}}\right)}^{2}+\frac{1}{2}{\mathrm{kw}}^{2}-\mathrm{qw};$$
$$\frac{\partial \mathrm{F}}{\partial \mathrm{w}}-\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\partial \mathrm{F}}{\partial \left(\frac{\mathrm{dw}}{\mathrm{dx}}\right)}\right)=0$$
(1)
$$\frac{\partial \mathrm{F}}{\partial {\uptheta }_{\mathrm{x}}}-\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\partial \mathrm{F}}{\partial \left(\frac{\partial {\uptheta }_{\mathrm{x}}}{\partial \mathrm{x}}\right)}\right)=0$$
(2)

is known as Euler – Lagrange equation and the governing static equations of equilibrium state of elastic body.

$$\frac{\partial {F}}{\partial \mathrm{w}}={kw}-{q}; \frac{\partial {F}}{\partial \left(\frac{{dw}}{{dx}}\right)}={\alpha AG}\left(-{\uptheta }_{{x}}+\frac{\partial {w}}{\partial {x}}\right);\frac{\partial {F}}{\partial {\uptheta }_{{x}}}={\alpha AG}{\uptheta }_{{x}}-{\alpha AG}\frac{\partial {w}}{\partial {x}}{ and }\frac{\partial {F}}{\partial \left(\frac{\partial {\uptheta }_{{x}}}{\partial {x}}\right)}={EI}\frac{\partial {\uptheta }_{{x}}}{\partial {x}}$$

Substitute in Eq. (1) one get, \({kw}-{q}-\frac{{d}}{{dx}}\left({\alpha AG}\left({-\uptheta }_{{x}}+\frac{\partial {w}}{{\partial }_{{x}}}\right)\right)=0\therefore -{\alpha AG}\left(-\frac{\partial {\uptheta }_{{x}}}{\partial {x}}+\frac{{{d}}^{2}{w}}{{{dx}}^{2}}\right)+{kw}-{q}=0\)

$$\therefore \mathrm{\alpha AG}\frac{{\mathrm{d}}^{2}\mathrm{w}}{{\mathrm{dx}}^{2}}-\mathrm{\alpha AG}\frac{\partial {\uptheta }_{\mathrm{x}}}{\partial \mathrm{x}}-\mathrm{kw}+\mathrm{q}=0;$$
(3)

Substitute in Eq. (2) one get, \({\alpha AG}{\uptheta }_{{x}}-{\alpha AG}\frac{\partial {w}}{\partial {x}}-\frac{{d}}{{dx}}\left({EI}\frac{\partial {\uptheta }_{{x}}}{\partial {x}}\right)=0\therefore {\alpha AG}{\uptheta }_{{x}}-{\alpha AG}\frac{\partial {w}}{\partial {x}}-{EI}\frac{{\mathrm{d}}^{2}{\uptheta }_{{x}}}{{{dx}}^{2}}=0\)

$$\therefore \mathrm{EI}\frac{{\mathrm{d}}^{2}{\uptheta }_{\mathrm{x}}}{{\mathrm{dx}}^{2}}+\mathrm{\alpha AG}\frac{\partial \mathrm{w}}{\partial \mathrm{x}}-\mathrm{\alpha AG}{\uptheta }_{\mathrm{x}}=0;$$
(4)

Equations (3) and (4) are couple governing differential equation of beams on Winkler foundation.

Decoupling the differential equations of equilibrium

$$\frac{{dM}}{{dx}}={Q\; and\; }\frac{{dQ}}{{dx}}=-{q};{M}=-{EI}\frac{\partial {\uptheta }_{{x}}}{\partial {x}}\therefore \frac{{dM}}{{dx}}=-{EI}\frac{{{d}}^{2}{\uptheta }_{{x}}}{{{dx}}^{2}}={Q};\therefore \frac{{dQ}}{{dx}}=-{EI}\frac{{{d}}^{3}{\uptheta }_{{x}}}{{{dx}}^{3}}=-{q}\therefore \frac{{{d}}^{3}{\uptheta }_{{x}}}{{{dx}}^{3}}=\frac{{q}}{{EI}}$$

From Eq. (3), \({\alpha AG}\frac{{{d}}^{2}{w}}{{{dx}}^{2}}-{\alpha AG}\frac{\partial {\uptheta }_{{x}}}{\partial {x}}-{kw}+{q}=0 \therefore {\alpha AG}\frac{{{d}}^{3}{\uptheta }_{{x}}}{{{dx}}^{3}}-{\alpha AG}\frac{{{d}}^{4}{w}}{{{dx}}^{4}}+{k}\frac{{{d}}^{2}{w}}{{{dx}}^{2}}=\frac{{{d}}^{2}{q}}{{{dx}}^{2}}\)

$$\mathrm{Substituting }\frac{{\mathrm{d}}^{3}{\uptheta }_{\mathrm{x}}}{{\mathrm{dx}}^{3}}=\frac{\mathrm{q}}{\mathrm{EI}} \therefore \frac{\mathrm{\alpha AGq}}{\mathrm{EI}}-\mathrm{\alpha AG}\frac{{\mathrm{d}}^{4}\mathrm{w}}{{\mathrm{dx}}^{4}}+\mathrm{k}\frac{{\mathrm{d}}^{2}\mathrm{w}}{{\mathrm{dx}}^{2}}=\frac{{\mathrm{d}}^{2}\mathrm{q}}{{\mathrm{dx}}^{2}}$$
$$\mathrm{\alpha AGq}-\mathrm{EI\alpha AG}\frac{{\mathrm{d}}^{4}\mathrm{w}}{{\mathrm{dx}}^{4}}+\mathrm{EIk}\frac{{\mathrm{d}}^{2}\mathrm{w}}{{\mathrm{dx}}^{2}}=\mathrm{EI}\frac{{\mathrm{d}}^{2}\mathrm{q}}{{\mathrm{dx}}^{2}}\therefore \mathrm{EI\alpha AG}\frac{{\mathrm{d}}^{4}\mathrm{w}}{{\mathrm{dx}}^{4}}-\mathrm{EIk}\frac{{\mathrm{d}}^{2}\mathrm{w}}{{\mathrm{dx}}^{2}}+\mathrm{EI}\frac{{\mathrm{d}}^{2}\mathrm{q}}{{\mathrm{dx}}^{2}}=\mathrm{\alpha AGq}$$

Beam without foundation k = 0;

$$\therefore \mathrm{EI}\frac{{\mathrm{d}}^{4}\mathrm{w}}{{\mathrm{dx}}^{4}}+\frac{\mathrm{EI}}{\mathrm{\alpha AG}}\frac{{\mathrm{d}}^{2}\mathrm{q}}{{\mathrm{dx}}^{2}}=\mathrm{q}$$

Appendix B

$${{N}}_{{w}1}=\frac{1}{\left(1+5{\varphi }-20{{\varphi }}^{2}\right)\left(4{\varphi }+1\right)}\left[\frac{24\left(4{\varphi }+1\right){{x}}^{5}}{{{L}}^{5}}-\frac{4{{x}}^{4}\left(-40{{\varphi }}^{2}+70{\varphi }+17\right)}{{{L}}^{4}}+\frac{6{{x}}^{3}\left(-80{{\varphi }}^{2}+40{\varphi }+11\right)}{{{L}}^{3}}-\frac{{{x}}^{2}\left(160{{\varphi }}^{3}-440{{\varphi }}^{2}+32{\varphi }+23\right)}{{{L}}^{2}}-\frac{3{x}\left(-80{{\varphi }}^{3}+40{{\varphi }}^{2}+11{\varphi }\right)}{{L}}+\left(1+5{\varphi }-20{{\varphi }}^{2}\right)\left(4{\varphi }+1\right)\right]$$
$${{N}}_{{w}2}=\frac{1}{\left(1+5{\varphi }-20{{\varphi }}^{2}\right)}\left[-\frac{4\left(2{\varphi }-1\right){{x}}^{5}}{{{L}}^{4}}-\frac{6\left(-20{{\varphi }}^{2}+5{\varphi }+2\right){{x}}^{4}}{\left(4{\varphi }+1\right){{L}}^{3}}+\frac{\left(-160{{\varphi }}^{2}+36{\varphi }+13\right){{x}}^{3}}{\left(4{\varphi }+1\right){{L}}^{2}}-\frac{3\left(-60{{\varphi }}^{2}+11{\varphi }+4\right){{x}}^{2}}{2{L}\left(4{\varphi }+1\right)}+\frac{\left(-36{{\varphi }}^{2}+5{\varphi }+2\right){x}}{2\left(4{\varphi }+1\right)}\right]$$
$${\mathrm{N}}_{\mathrm{w}3}=\frac{1}{\left(4\mathrm{\varphi }+1\right)}\left[\frac{16{\mathrm{x}}^{4}}{{\mathrm{L}}^{4}}-\frac{32{\mathrm{x}}^{3}}{{\mathrm{L}}^{3}}-\frac{16{\mathrm{x}}^{2}\left(\mathrm{\varphi }-1\right)}{{\mathrm{L}}^{2}}+\frac{16\mathrm{\varphi x}}{\mathrm{L}}\right]$$
$${{N}}_{{w}4}=\frac{32{{x}}^{3}}{-20{{L}}^{2}{{\varphi }}^{2}+5{{L}}^{2}{\varphi }+{{L}}^{2}}-\frac{40{{x}}^{4}\left({\varphi }+1\right)}{-20{{L}}^{3}{{\varphi }}^{2}+5{{L}}^{3}{\varphi }+{{L}}^{3}}+\frac{16{{x}}^{5}\left({\varphi }+1\right)}{-20{{L}}^{4}{{\varphi }}^{2}+5{{L}}^{4}{\varphi }+{{L}}^{4}}-\frac{16{\varphi x}}{-20{{\varphi }}^{2}+5{\varphi }+1}+\frac{8{{x}}^{2}\left(5{\varphi }-1\right)}{-20{L}{{\varphi }}^{2}+5{L\varphi }+{L}}$$
$${{N}}_{{w}5}=-\frac{24{{x}}^{5}}{-20{{L}}^{5}{{\varphi }}^{2}+5{{L}}^{5}{\varphi }+{{L}}^{5}}+\frac{4\left(40{{\varphi }}^{2}+50{\varphi }+13\right){{x}}^{4}}{\left(4{\varphi }+1\right)\left(-20{{L}}^{4}{{\varphi }}^{2}+5{{L}}^{4}{\varphi }+{{L}}^{4}\right)}-\frac{2\left(80{{\varphi }}^{2}+40{\varphi }+17\right){{x}}^{3}}{\left(4{\varphi }+1\right)\left(-20{{L}}^{3}{{\varphi }}^{2}+5{{L}}^{3}{\varphi }+{{L}}^{3}\right)}-\frac{\left(160{{\varphi }}^{3}+40{{\varphi }}^{2}+32{\varphi }-7\right){{x}}^{2}}{\left(4{\varphi }+1\right)\left(-20{{L}}^{2}{{\varphi }}^{2}+5{{L}}^{2}{\varphi }+{{L}}^{2}\right)}+\frac{\left(80{{\varphi }}^{3}+40{{\varphi }}^{2}+17{\varphi }\right){x}}{\left(4{\varphi }+1\right)\left(-20{L}{{\varphi }}^{2}+5{L\varphi }+{L}\right)}$$
$${{N}}_{{w}6}=-\frac{4{{x}}^{5}\left(2{\varphi }-1\right)}{-20{{L}}^{4}{{\varphi }}^{2}+5{{L}}^{4}{\varphi }+{{L}}^{4}}-\frac{{x}\left(-4{{\varphi }}^{2}+5{\varphi }\right)}{2\left(4{\varphi }+1\right)\left(-20{{\varphi }}^{2}+5{\varphi }+1\right)}-\frac{{{x}}^{3}\left(4{\varphi }-5\right)}{\left(4{\varphi }+1\right)\left(-20{{L}}^{2}{{\varphi }}^{2}+5{{L}}^{2}{\varphi }+{{L}}^{2}\right)}-\frac{{{x}}^{2}\left(20{{\varphi }}^{2}-17{\varphi }+2\right)}{2\left(4{\varphi }+1\right)\left(-20{L}{{\varphi }}^{2}+5{L\varphi }+{L}\right)}-\frac{2{{x}}^{4}\left(-20{{\varphi }}^{2}+5{\varphi }+4\right)}{\left(4{\varphi }+1\right)\left(-20{{L}}^{3}{{\varphi }}^{2}+5{{L}}^{3}{\varphi }+{{L}}^{3}\right)}$$
$${{N}}_{\uptheta }=\left\{\begin{array}{c}\frac{120{{x}}^{4}}{5{{L}}^{5}{\varphi }+{{L}}^{5}}-\frac{2{x}\left(100{\varphi }+23\right)}{\left(5{\varphi }+1\right)\left(4{{L}}^{2}{\varphi }+{{L}}^{2}\right)}-\frac{16{{x}}^{3}\left(70{\varphi }+17\right)}{\left(5{\varphi }+1\right)\left(4{{L}}^{4}{\varphi }+{{L}}^{4}\right)}+\frac{6{{x}}^{2}\left(140{\varphi }+33\right)}{\left(5{\varphi }+1\right)\left(4{{L}}^{3}{\varphi }+{{L}}^{3}\right)}\\ -\frac{20\left(2{\varphi }-1\right){{x}}^{4}}{5{{L}}^{4}{\varphi }+{{L}}^{4}}-\frac{8\left(-40{{\varphi }}^{2}+15{\varphi }+6\right){{x}}^{3}}{\left(5{\varphi }+1\right)\left(4{{L}}^{3}{\varphi }+{{L}}^{3}\right)}+\frac{\left(-160{{\varphi }}^{2}+128{\varphi }+39\right){{x}}^{2}}{\left(5{\varphi }+1\right)\left(4{{L}}^{2}{\varphi }+{{L}}^{2}\right)}-\frac{\left(20{{\varphi }}^{2}+57{\varphi }+12\right){x}}{\left(5{\varphi }+1\right)\left({L}+4{L\varphi }\right)}+1\\ \frac{64{{x}}^{3}}{4{{L}}^{4}{\varphi }+{{L}}^{4}}-\frac{96{{x}}^{2}}{4{{L}}^{3}{\varphi }+{{L}}^{3}}+\frac{32{x}}{4{{L}}^{2}{\varphi }+{{L}}^{2}}\\ \frac{80{{x}}^{4}\left({\varphi }+1\right)}{{{L}}^{4}\left(5{\varphi }+1\right)}-\frac{160{{x}}^{3}\left({\varphi }+1\right)}{{{L}}^{3}\left(5{\varphi }+1\right)}-\frac{16{x}}{{L}\left(5{\varphi }+1\right)}+\frac{16{{x}}^{2}\left(5{\varphi }+6\right)}{{{L}}^{2}\left(5{\varphi }+1\right)}\\ -\frac{120{{x}}^{4}}{5{{L}}^{5}{\varphi }+{{L}}^{5}}+\frac{16\left(50{\varphi }+13\right){{x}}^{3}}{\left(5{\varphi }+1\right)\left(4{{L}}^{4}{\varphi }+{{L}}^{4}\right)}-\frac{6\left(60{\varphi }+17\right){{x}}^{2}}{\left(5{\varphi }+1\right)\left(4{{L}}^{3}{\varphi }+{{L}}^{3}\right)}+\frac{2\left(20{\varphi }+7\right){x}}{\left(5{\varphi }+1\right)\left(4{{L}}^{2}{\varphi }+{{L}}^{2}\right)}\\ -\frac{20\left(2{\varphi }-1\right){{x}}^{4}}{5{{L}}^{4}{\varphi }+{{L}}^{4}}-\frac{8\left(-40{{\varphi }}^{2}+5{\varphi }+4\right){{x}}^{3}}{\left(5{\varphi }+1\right)\left(4{{L}}^{3}{\varphi }+{{L}}^{3}\right)}+\frac{\left(-160{{\varphi }}^{2}+8{\varphi }+15\right){{x}}^{2}}{\left(5{\varphi }+1\right)\left(4{{L}}^{2}{\varphi }+{{L}}^{2}\right)}+\frac{\left(20{{\varphi }}^{2}+{\varphi }-2\right){x}}{\left(5{\varphi }+1\right)\left({L}+4{L\varphi }\right)}\end{array}\right.$$

where φ = 12D/(SL2) and D = EI, S = αAG.

$${\mathrm{U}}_{\mathrm{Beam}} =\frac{\mathrm{EI}}{2}{\int }_{0}^{\mathrm{L}}{\left(\frac{\partial {\uptheta }_{\mathrm{x}}}{\partial \mathrm{x}}\right)}^{2}dx+\frac{\mathrm{\alpha AG}}{2}{\int }_{0}^{\mathrm{L}}{\left(-{\uptheta }_{\mathrm{z}}+\frac{\partial \mathrm{w}}{\partial \mathrm{x}}\right)}^{2}dz$$
$${\mathrm{U}}_{\mathrm{Beam}} =\frac{1}{2}{\int }_{0}^{\mathrm{L}}\mathrm{EI}{\left\{\mathrm{d}\right\}}^{\mathrm{T}}{\left[{N}_{\varphi }\mathrm{^{\prime}}\right]}^{\mathrm{T}}\left[{N}_{\varphi }\mathrm{^{\prime}}\right]\left\{\mathrm{d}\right\}dx+\frac{1}{2}{\int }_{0}^{\mathrm{L}}\mathrm{\alpha AG}{\left\{\mathrm{d}\right\}}^{\mathrm{T}}{\left(-\left[{N}_{\varphi }\right]+\left[{N}_{w}\mathrm{^{\prime}}\right]\right)}^{\mathrm{T}}\left(-\left[{N}_{\varphi }\right]+\left[{N}_{w}\mathrm{^{\prime}}\right]\right)\left\{\mathrm{d}\right\}dx$$
$${\mathrm{U}}_{\mathrm{Beam}} =\frac{1}{2}{\left\{\mathrm{d}\right\}}^{\mathrm{T}}\left[{\mathrm{K}}_{\mathrm{b}}\right]\left\{\mathrm{d}\right\}+\frac{1}{2}{\left\{\mathrm{d}\right\}}^{\mathrm{T}}\left[{\mathrm{K}}_{\mathrm{s}}\right]\left\{\mathrm{d}\right\}$$
$$\mathrm{Bending stiffness matrix}, \left[{\mathrm{K}}_{\mathrm{b}}\right]={\int }_{0}^{\mathrm{L}}\mathrm{EI}{\left[{N}_{\varphi }\mathrm{^{\prime}}\right]}^{\mathrm{T}}\left[{N}_{\varphi }\mathrm{^{\prime}}\right]dx$$
$$and\; {shear\; stiffness\; matrix}, \left[{{K}}_{{s}}\right]={\int }_{0}^{{L}}{EI}{\left(-\left[{N}_{\varphi }\right]+\left[{N}_{w}{^{\prime}}\right]\right)}^{{T}}\left(-\left[{N}_{\varphi }\right]+\left[{N}_{w}{^{\prime}}\right]\right)dx$$
$${\uptheta }_{{x}}=\left[{N}_{\varphi }\right]\left\{{d }\right\}{ and w}=\left[{N}_{w}\right]\left\{{d }\right\}{ where\; d\; is\; the\; displacement\; vector}.$$

According to the theory of elasticity, the strain energy Ur in a linear spring is given as 1/2Kw2.

$${\mathrm{U}}_{\mathrm{sk}}=\frac{1}{2}{\int }_{0}^{\mathrm{L}}{\mathrm{Kw}}^{2}\mathrm{dA}=\frac{\mathrm{Kb}}{2}{\int }_{0}^{\mathrm{L}}{\mathrm{w}}^{2}\mathrm{dx}=\frac{\mathrm{k}}{2}{\int }_{0}^{\mathrm{L}}{\mathrm{w}}^{2}\mathrm{dx };\mathrm{ K is the soil parameter}.$$
$$\mathrm{Strain energy }{\mathrm{U}}_{\mathrm{sk}}=\frac{1}{2}{\int }_{0}^{\mathrm{L}}\mathrm{k}{\left\{\mathrm{d}\right\}}^{\mathrm{T}}{\left[{N}_{w}\right]}^{\mathrm{T}}\left[{N}_{w}\right]\left\{\mathrm{d}\right\}\mathrm{dx }= \frac{1}{2}{\left\{\mathrm{d}\right\}}^{\mathrm{T}}\left[{\mathrm{K}}_{\mathrm{f}}\right]\left\{\mathrm{d}\right\}$$

In which the foundation stiffness matrix for the element is \([{\mathrm{K}}_{\mathrm{f}}] ={\int }_{0}^{\mathrm{L}}\mathrm{k}{\left[{N}_{w}\right]}^{\mathrm{T}}\left[{N}_{w}\right]\mathrm{dx}\)

Hence the element stiffness matrix is

$$\therefore \left[{\mathrm{k}}_{\mathrm{e}}\right]=\left[{\mathrm{K}}_{\mathrm{b}}\right]+\left[{\mathrm{K}}_{\mathrm{s}}\right]+\left[{\mathrm{K}}_{\mathrm{f}}\right]$$

By using standard finite element procedure the global stiffness matrix is obtained

$$\therefore \left[{\mathrm{K}}_{\mathrm{S}}\right]=\sum_{1}^{\mathrm{n}}\left(\left[{\mathrm{K}}_{\mathrm{b}}\right]+\left[{\mathrm{K}}_{\mathrm{s}}\right]+\left[{\mathrm{K}}_{\mathrm{f}}\right]\right)$$
(5)

The nodal load vector is determined by the virtual work principle using the Lagrangian interpolation. The force vector for uniformly varying load of intensity w1, w2 and w3 at three nodes respectively is the quadratic polynomial that passes through the three data points. This element has nodes at x = (0, L/2, L).

$${fe}=\left[\begin{array}{ccc}\frac{L\left(-4480{\varphi}^3-680{\varphi}^2+374\varphi +57\right)}{420\left(-80{\varphi}^3+9\varphi +1\right)}& \frac{L\left(28\varphi +11\right)}{105\left(4\varphi +1\right)}& \frac{L\left(1120{\varphi}^3+440{\varphi}^2+64\varphi -3\right)}{420\left(-80{\varphi}^3+9\varphi +1\right)}\\ {}\frac{L^2\left(-140{\varphi}^2+7\varphi +6\right)}{840\left(-80{\varphi}^3+9\varphi +1\right)}& \frac{L^2}{105\left(4\varphi +1\right)}& \frac{L^2\varphi \left(20\varphi +23\right)}{840\left(-80{\varphi}^3+9\varphi +1\right)}\\ {}\frac{4L\left(7\varphi +1\right)}{105\left(4\varphi +1\right)}& \frac{16L\left(14\varphi +3\right)}{105\left(4\varphi +1\right)}& \frac{4L\left(7\varphi +1\right)}{105\left(4\varphi +1\right)}\\ {}-\frac{2{L}^2\left(15\varphi +1\right)}{105\left(-20{\varphi}^2+5\varphi +1\right)}& 0& \frac{2{L}^2\left(15\varphi +1\right)}{105\left(-20{\varphi}^2+5\varphi +1\right)}\\ {}\frac{L\left(1120{\varphi}^3+440{\varphi}^2+64\varphi -3\right)}{420\left(-80{\varphi}^3+9\varphi +1\right)}& \frac{L\left(28\varphi +11\right)}{105\left(4\varphi +1\right)}& \frac{L\left(-4480{\varphi}^3-680{\varphi}^2+374\varphi +57\right)}{420\left(-80{\varphi}^3+9\varphi +1\right)}\\ {}-\frac{L^2\varphi \left(20\varphi +23\right)}{840\left(-80{\varphi}^3+9\varphi +1\right)}& -\frac{L^2}{105\left(4\varphi +1\right)}& -\frac{L^2\left(-140{\varphi}^2+7\varphi +6\right)}{840\left(-80{\varphi}^3+9\varphi +1\right)}\end{array}\right]\left\lfloor \begin{array}{c}{{w}}_1\\ {}{{w}}_2\\ {}{{w}}_3\end{array}\right\rfloor$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A.K., Mandal, J.J. & Bandyopadhyay, D. Application of Quintic Displacement Function in Static Analysis of Deep Beams on Elastic Foundation. Archit. Struct. Constr. 2, 257–267 (2022). https://doi.org/10.1007/s44150-022-00055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44150-022-00055-8

Keywords

Navigation