Skip to main content

Advertisement

Log in

The effects of UV filters on health and the environment

  • Reviews
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Sunscreens are an important means of protection against sunburns, dyspigmentation, photoaging, and photocarcinogenesis. Sunscreens come in a variety of formulations that can protect against ultraviolet B (UVB) radiation, both UVB and ultraviolet A (UVA) radiation (broad-spectrum sunscreens), and UVB, UVA, and visible light (tinted broad-spectrum sunscreens). In the USA, there is currently a paucity of FDA-approved broad-spectrum filters on the market. Studies have identified the presence of multiple UV filters in water sources globally. Many laboratory studies have implicated the potential impact of UV filters on coral reef bleaching, the food chain, and human health. However, many of these studies are performed at concentrations that are much higher than those present in the natural environment. With increasing discussion surrounding the role of organic and inorganic UV filters as potential environmental pollutants over the past decade, approval of additional broad-spectrum filters would be an important means of alleviating the use of more controversial filters. The aim of this article is to review the effects of UV filters on health and the environment and explore potential adjunctive agents for photoprotection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guan, L. L., Lim, H. W., & Mohammad, T. F. (2021). Sunscreens and photoaging: A review of current literature. American Journal of Clinical Dermatology, 22(6), 819–828.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Narla, S., et al. (2020). Visible light in photodermatology. Photochemical & Photobiological Sciences, 19(1), 99–104.

    Article  CAS  Google Scholar 

  3. Latha, M. S., et al. (2013). Sunscreening agents: A review. The Journal of Clinical and Aesthetic Dermatology, 6(1), 16–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Osterwalder, U., Sohn, M., & Herzog, B. (2014). Global state of sunscreens. Photodermatology, Photoimmunology and Photomedicine, 30(2–3), 62–80.

    Article  PubMed  Google Scholar 

  5. US Food and Drug Administration sunscreen drug products for over-the ... (n.d.). Retrieved August 7, from https://www.accessdata.fda.gov/drugsatfda_docs/omuf/OTCMonograph_M020-SunscreenDrugProductsforOTCHumanUse09242021.pdf.

  6. Jesus, A., et al. (2022). UV filters: Challenges and prospects. Pharmaceuticals (Basel), 15(3), 263.

    Article  CAS  PubMed  Google Scholar 

  7. Schlumpf, M., et al. (2001). In vitro and in vivo estrogenicity of UV screens. Environmental Health Perspectives, 109(3), 239–244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wang, S. Q., Burnett, M. E., & Lim, H. W. (2011). Safety of oxybenzone: Putting numbers into perspective. Archives of Dermatology, 147(7), 865–866.

    Article  PubMed  Google Scholar 

  9. Kim, S., & Choi, K. (2014). Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: A mini-review. Environment International, 70, 143–157.

    Article  CAS  PubMed  Google Scholar 

  10. Valle-Sistac, J., et al. (2016). Determination of parabens and benzophenone-type UV filters in human placenta. First description of the existence of benzyl paraben and benzophenone-4. Environment international, 88, 243–249.

    Article  CAS  PubMed  Google Scholar 

  11. Ghazipura, M., et al. (2017). Exposure to benzophenone-3 and reproductive toxicity: A systematic review of human and animal studies. Reproductive Toxicology, 73, 175–183.

    Article  CAS  PubMed  Google Scholar 

  12. Bluthgen, N., et al. (2014). Accumulation and effects of the UV-filter octocrylene in adult and embryonic zebrafish (Danio rerio). Science of the Total Environment, 476–477, 207–217.

    Article  PubMed  Google Scholar 

  13. Suh, S., et al. (2020). The banned sunscreen ingredients and their impact on human health: A systematic review. International Journal of Dermatology, 59(9), 1033–1042.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lim, H. W., Mohammad, T. F., & Wang, S. Q. (2022). Food and Drug Administration’s proposed sunscreen final administrative order: How does it affect sunscreens in the United States? Journal of the American Academy of Dermatology, 86(2), e83–e84.

    Article  PubMed  Google Scholar 

  15. Trends, G. July 12, 2022]; Available from: https://trends.google.com/trends/explore?date=2012-06-17%202022-07-17&geo=US&q=reef-safe%20sunscreen.

  16. Danovaro, R., et al. (2008). Sunscreens cause coral bleaching by promoting viral infections. Environmental Health Perspectives, 116(4), 441–447.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Downs, C. A., et al. (2016). Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the US Virgin Islands. Archives of Environmental Contamination and Toxicology, 70(2), 265–288.

    Article  CAS  PubMed  Google Scholar 

  18. Jonasson, S., et al. (2013). Inhalation exposure of nano-scaled titanium dioxide (TiO2) particles alters the inflammatory responses in asthmatic mice. Inhalation Toxicology, 25(4), 179–191.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, T., et al. (2013). Cardiovascular effects of pulmonary exposure to titanium dioxide nanoparticles in ApoE knockout mice. Journal of Nanoscience and Nanotechnology, 13(5), 3214–3222.

    Article  CAS  PubMed  Google Scholar 

  20. Hund-Rinke, K., & Simon, M. (2006). Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research International, 13(4), 225–232.

    Article  CAS  PubMed  Google Scholar 

  21. Beckett, W. S., et al. (2005). Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: A human inhalation study. American Journal of Respiratory and Critical Care Medicine, 171(10), 1129–1135.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Smijs, T. G., & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnology, Science and Applications, 4, 95–112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jiang, R., et al. (1999). Absorption of sunscreens across human skin: An evaluation of commercial products for children and adults. British Journal of Clinical Pharmacology, 48(4), 635–637.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Calafat, A. M., et al. (2008). Concentrations of the sunscreen agent benzophenone-3 in residents of the United States: National Health and Nutrition Examination Survey 2003–2004. Environmental Health Perspectives, 116(7), 893–897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. National Research Council. (2022). Review of Fate, Exposure, and Effects of Sunscreens in Aquatic Environments and Implications for Sunscreen Usage and Human Health. The National Academies Press. https://doi.org/10.17226/26381

    Book  Google Scholar 

  26. Schneider, S. L., & Lim, H. W. (2019). Review of environmental effects of oxybenzone and other sunscreen active ingredients. Journal of the American Academy of Dermatology, 80(1), 266–271.

    Article  CAS  PubMed  Google Scholar 

  27. Ramos, S., et al. (2016). A review of organic UV-filters in wastewater treatment plants. Environment International, 86, 24–44.

    Article  CAS  PubMed  Google Scholar 

  28. da Silva, C. P., Emidio, E. S., & de Marchi, M. R. (2015). The occurrence of UV filters in natural and drinking water in Sao Paulo State (Brazil). Environmental Science and Pollution Research International, 22(24), 19706–19715.

    Article  PubMed  Google Scholar 

  29. Balmer, M. E., et al. (2005). Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss Lakes. Environmental Science and Technology, 39(4), 953–962.

    Article  CAS  PubMed  Google Scholar 

  30. Ekpeghere, K. I., et al. (2016). Distribution and seasonal occurrence of UV filters in rivers and wastewater treatment plants in Korea. Science of the Total Environment, 542(Pt A), 121–128.

    Article  CAS  PubMed  Google Scholar 

  31. Cuderman, P., & Heath, E. (2007). Determination of UV filters and antimicrobial agents in environmental water samples. Analytical and Bioanalytical Chemistry, 387(4), 1343–1350.

    Article  CAS  PubMed  Google Scholar 

  32. Tashiro, Y., & Kameda, Y. (2013). Concentration of organic sun-blocking agents in seawater of beaches and coral reefs of Okinawa Island Japan. Marine Pollution Bulletin, 77(1–2), 333–340.

    Article  CAS  PubMed  Google Scholar 

  33. DiNardo, J. C., & Downs, C. A. (2018). Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone-3. Journal of Cosmetic Dermatology, 17(1), 15–19.

    Article  PubMed  Google Scholar 

  34. Tsui, M. M., et al. (2014). Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries. Water Research, 67, 55–65.

    Article  CAS  PubMed  Google Scholar 

  35. Sherwood, V. F., et al. (2012). Altered UV absorbance and cytotoxicity of chlorinated sunscreen agents. Cutaneous and Ocular Toxicology, 31(4), 273–279.

    Article  CAS  PubMed  Google Scholar 

  36. Manasfi, T., et al. (2017). Degradation of Organic UV filters in Chlorinated Seawater Swimming Pools: Transformation Pathways and Bromoform Formation. Environmental Science and Technology, 51(23), 13580–13591.

    Article  CAS  PubMed  Google Scholar 

  37. Environmental Protection Agency. (n.d.). EPA. Retrieved July 13, from https://www.epa.gov/coral-reefs/basic-information-about-coral-reefs#:~:text=Healthy%20coral%20reefs%20provide%3A,including%20commercially%20harvested%20fish%20species.

  38. Mitchelmore, C. L., et al. (2021). A critical review of organic ultraviolet filter exposure, hazard, and risk to corals. Environmental Toxicology and Chemistry, 40(4), 967–988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhang, Y., et al. (2021). Potentiation of lethal and sub-lethal effects of benzophenone and oxybenzone by UV light in zebrafish embryos. Aquatic Toxicology, 235, 105835.

    Article  CAS  PubMed  Google Scholar 

  40. Vuckovic, D., et al. (2022). Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals. Science, 376(6593), 644–648.

    Article  CAS  PubMed  Google Scholar 

  41. Hansel, C. M. (2022). Sunscreens threaten coral survival. Science, 376(6593), 578–579.

    Article  CAS  PubMed  Google Scholar 

  42. Conway, A. J., et al. (2021). Acute toxicity of the UV filter oxybenzone to the coral Galaxea fascicularis. Science of the Total Environment, 796, 148666.

    Article  CAS  PubMed  Google Scholar 

  43. Corinaldesi, C., et al. (2018). Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora spp). Science of The Total Environment, 637–638, 1279–1285.

    Article  PubMed  Google Scholar 

  44. National Geographic Society. (2022). F.B.a.b.N.G.S.R.J., 2022, from https://www.nationalgeographic.org/activity/biomagnification-and-bioaccumulation/#:~:text=Bioaccumulation%20takes%20place%20in%20a,higher%20concentration%20in%20apex%20predators.

  45. Wang, W., Lee, I. S., & Oh, J. E. (2022). Specific-accumulation and trophic transfer of UV filters and stabilizers in marine food web. Science of the Total Environment, 825, 154079.

    Article  CAS  PubMed  Google Scholar 

  46. Barone, A. N., et al. (2019). Acute toxicity testing of TiO2-based vs oxybenzone-based sunscreens on clownfish (Amphiprion ocellaris). Environmental Science and Pollution Research, 26(14), 14513–14520.

    Article  CAS  PubMed  Google Scholar 

  47. Langford, K. H., et al. (2015). Environmental occurrence and risk of organic UV filters and stabilizers in multiple matrices in Norway. Environment International, 80, 1–7.

    Article  CAS  PubMed  Google Scholar 

  48. Coronado, M., et al. (2008). Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish. Aquatic Toxicology, 90(3), 182–187.

    Article  CAS  PubMed  Google Scholar 

  49. Vidal-Linan, L., et al. (2018). Bioaccumulation of UV filters in Mytilus galloprovincialis mussel. Chemosphere, 190, 267–271.

    Article  CAS  PubMed  Google Scholar 

  50. Sanchez-Suarez, J., et al. (2021). Cliona varians-derived actinomycetes as bioresources of photoprotection-related bioactive end-products. Marine Drugs, 19(12), 674.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Parrado, C., et al. (2020). The role of the aqueous extract Polypodium leucotomos in photoprotection. Photochemical & Photobiological Sciences, 19(6), 831–843.

    Article  CAS  Google Scholar 

  52. Bhatia, N. (2015). Polypodium leucotomos: A potential new photoprotective agent. American Journal of Clinical Dermatology, 16(2), 73–79.

    Article  PubMed  Google Scholar 

  53. Segars, K., McCarver, V., & Miller, R. A. (2021). Dermatologic applications of polypodium leucotomos: a literature review. The Journal of Clinical and Aesthetic Dermatology, 14(2), 50–60.

    PubMed Central  PubMed  Google Scholar 

  54. Kostyuk, V., et al. (2018). Natural substances for prevention of skin photoaging: screening systems in the development of sunscreen and rejuvenation cosmetics. Rejuvenation Research, 21(2), 91–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Mejia-Giraldo, J. C., et al. (2016). Photoprotective potential of Baccharis antioquensis (Asteraceae) as natural sunscreen. Photochemistry and Photobiology, 92(5), 742–752.

    Article  CAS  PubMed  Google Scholar 

  56. Mejia-Giraldo, J. C., Gallardo, C., & Puertas-Mejia, M. A. (2022). Selected extracts from high mountain plants as potential sunscreens with antioxidant capacity. Photochemistry and Photobiology, 98(1), 211–219.

    Article  CAS  PubMed  Google Scholar 

  57. Mejia-Giraldo, J. C., Winkler, R., & Puertas-Mejia, M. (2021). Novel UV filters from Pentacalia pulchella extracts with photoprotective properties and antioxidant activity. Photochemical & Photobiological Sciences, 20(12), 1585–1597.

    Article  CAS  Google Scholar 

  58. Catelan, T. B. S., et al. (2019). Evaluation of the in vitro photoprotective potential of ethanolic extracts of four species of the genus Campomanesia. Journal of Photochemistry and Photobiology B: Biology, 197, 111500.

    Article  CAS  PubMed  Google Scholar 

  59. Opris, O., et al. (2022). Efficient extraction of total polyphenols from apple and investigation of its SPF properties. Molecules, 27(5), 1679.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Tienaho, J., et al. (2021). Ultraviolet absorbance of Sphagnum magellanicum, S. fallax and S. fuscum extracts with seasonal and species-specific variation. Photochemical & Photobiological Sciences, 20(3), 379–389.

    Article  CAS  Google Scholar 

  61. Teixeira, T. R., et al. (2021). In vitro evaluation of the photoprotective potential of quinolinic alkaloids isolated from the Antarctic Marine Fungus Penicillium echinulatum for topical use. Marine Biotechnology (New York, N.Y.), 23(3), 357–372.

    Article  CAS  PubMed  Google Scholar 

  62. Oh, J. J., et al. (2021). Fungal melanin as a biocompatible broad-spectrum sunscreen with high antioxidant activity. RSC Advances, 11(32), 19682–19689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Losantos, R., et al. (2017). Rational design and synthesis of efficient sunscreens to boost the solar protection factor. Angewandte Chemie (International Ed. in English), 56(10), 2632–2635.

    Article  CAS  PubMed  Google Scholar 

  64. Widsten, P., Tamminen, T., & Liitia, T. (2020). Natural sunscreens based on nanoparticles of modified Kraft lignin (CatLignin). ACS Omega, 5(22), 13438–13446.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Chen, F., Huber, C., & Schroder, P. (2017). Fate of the sunscreen compound oxybenzone in Cyperus alternifolius based hydroponic culture: Uptake, biotransformation and phytotoxicity. Chemosphere, 182, 638–646.

    Article  CAS  PubMed  Google Scholar 

  66. Javed, S., Mangla, B., & Ahsan, W. (2022). From propolis to nanopropolis: An exemplary journey and a paradigm shift of a resinous substance produced by bees. Phytotherapy Research, 36(5), 2016–2041.

    Article  CAS  PubMed  Google Scholar 

  67. Gregoris, E., et al. (2011). Propolis as potential cosmeceutical sunscreen agent for its combined photoprotective and antioxidant properties. International Journal of Pharmaceutics, 405(1–2), 97–101.

    Article  CAS  PubMed  Google Scholar 

  68. Simone-Finstrom, M., et al. (2017). Propolis counteracts some threats to honey bee health. Insects, 8(2), 46.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Peyrot, C., et al. (2020). Innovative bio-based organic UV-A and blue light filters from Meldrum’s acid. Molecules, 25(9), 2178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Xiong, Z. M., et al. (2021). Ultraviolet radiation protection potentials of Methylene Blue for human skin and coral reef health. Science and Reports, 11(1), 10871.

    Article  CAS  Google Scholar 

  71. Wijayanti, L. W., et al. (2021). Synthesis and evaluation of chalcone derivatives as novel sunscreen agent. Molecules, 26(9), 2698.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasneem F. Mohammad.

Ethics declarations

Conflict of interest

NS has no conflicts of interest to disclose. SS has served as an investigator for NAOS/Bioderma, Johnson& Johnson, Mantecorp Skincare Brasil and FQM Brasil. He has also served as a consultant for Pierre Fabre, ISDIN, FQM Brasil, Mantecorp Skincare Brasil and NAOS/Bioderma, and has participated as a speaker in an educational session for Pierre Fabre, La Roche-Posay, Eucerin and NAOS / Bioderma. HWL has served as an investigator for Incyte, L’Oréal, Pfizer, and PCORI. He has also served as a consultant for Pierre Fabre, ISDIN, Ferndale Pharma Group, La Roche-Posay, and Beiersdorf, and has participated as a speaker in an educational session for Pierre Fabre, La Roche-Posay, and Bioderma. TFM has served on the advisory board for Ferndale Pharma Group.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, N., Schalka, S., Lim, H.W. et al. The effects of UV filters on health and the environment. Photochem Photobiol Sci 22, 2463–2471 (2023). https://doi.org/10.1007/s43630-023-00446-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00446-w

Keywords

Navigation