Skip to main content

Advertisement

Log in

On the influence of hydrothermal treatment pH on the performance of Bi2WO6 as photocatalyst in the glycerol photoreforming

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Solar driven semiconductor-based photoreforming of biomass derivatives, such as glycerol is a sustainable alternative towards green hydrogen evolution concerted with production of chemical feedstocks. In this work, we have investigated the influence of the pH of the hydrothermal treatment on the efficiency of Bi2WO6 as photocatalyst in the glycerol photoreforming. Bi2WO6 is pointed as a promising material for this application due its adequate band gap and the ability to promote hole transfer directly to glycerol without formation of non-selective OH radicals. Samples prepared at neutral to moderate alkaline conditions (pH = 7–9) are highly crystalline, while those prepared in acidic media (pH = 0–2) exhibit higher concentrations of oxygen vacancies. At pH = 13, the non-stoichiometric Bi(III)-rich phase Bi3.84W0.16O6.24 is formed. All samples were fully characterized towards their optical and morphological properties. UV–Vis irradiation of the photocatalysts modified with 1% m/m Pt and in the presence of 5% v/v aqueous glycerol solution leads to H2 evolution and glycerol oxidation. The sample prepared at pH = 0 exhibited the highest photonic efficiency (ξ) for H2 evolution (1.4 ± 0.1%) among the investigated samples with 99% selectivity for simultaneous formic acid formation. Similar performance was observed for the non-stoichiometric Bi3.84W0.16O6.24 sample (ξ = 1.2 ± 0.1% and 88% selectivity for formic acid), whereas the more crystalline sample prepared at pH = 9 was less active (ξ = 0.9 ± 0.1%) and leads to multiple oxidation products. The different behaviors were rationalized based on the role of oxygen vacancies as active adsorption and redox sites at the semiconductor surface, stablishing clear relationships between the semiconductor structure and its photocatalytic performance. The present work contributes for the rational development of specific photocatalysts for glycerol photoreforming.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, Y., Zhang, N., Tang, Z.-R., & Xu, Y.-J. (2013). Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chemical Science, 4, 1820. https://doi.org/10.1039/c3sc50285f

    Article  CAS  Google Scholar 

  2. Liu, D., Liu, J.-C., Cai, W., Ma, J., Bin Yang, H., Xiao, H., Li, J., Xiong, Y., Huang, Y., & Liu, B. (2019). Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nature Communications, 10, 1779. https://doi.org/10.1038/s41467-019-09788-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khan, M. A., Al-Attas, T. A., Yasri, N. G., Zhao, H., Larter, S., Hu, J., & Kibria, M. G. (2020). Techno-economic analysis of a solar-powered biomass electrolysis pathway for coproduction of hydrogen and value-added chemicals. Sustainable Energy and Fuels, 4, 5568–5577. https://doi.org/10.1039/d0se01149e

    Article  CAS  Google Scholar 

  4. Chang, C., Skillen, N., Nagarajan, S., Ralphs, K., Irvine, J. T. S., Lawton, L., & Robertson, P. K. J. (2019). Using cellulose polymorphs for enhanced hydrogen production from photocatalytic reforming. Sustainable Energy and Fuels, 3, 1971–1975. https://doi.org/10.1039/c9se00377k

    Article  CAS  Google Scholar 

  5. Granone, L. I., Sieland, F., Zheng, N., Dillert, R., & Bahnemann, D. W. (2018). Photocatalytic conversion of biomass into valuable products: A meaningful approach? Green Chemistry, 20, 1169–1192. https://doi.org/10.1039/c7gc03522e

    Article  CAS  Google Scholar 

  6. Houache, M. S. E., Hughes, K., & Baranova, E. A. (2019). Study on catalyst selection for electrochemical valorization of glycerol. Sustainable Energy and Fuels, 3, 1892–1915. https://doi.org/10.1039/c9se00108e

    Article  CAS  Google Scholar 

  7. Huang, C. W., Nguyen, B. S., Wu, J. C. S., & Nguyen, V. H. (2020). A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water. International Journal of Hydrogen Energy., 45, 18144–18159. https://doi.org/10.1016/j.ijhydene.2019.08.121

    Article  CAS  Google Scholar 

  8. Wolski, L. (2020). Factors affecting the activity and selectivity of niobia-based gold catalysts in liquid phase glycerol oxidation. Catalysis Today, 354, 36–43. https://doi.org/10.1016/j.cattod.2019.07.015

    Article  CAS  Google Scholar 

  9. Dodekatos, G., Schünemann, S., & Tüysüz, H. (2018). Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catalysis, 8, 6301–6333. https://doi.org/10.1021/acscatal.8b01317

    Article  CAS  Google Scholar 

  10. Talebian-Kiakalaieh, A., Amin, N. A. S., Rajaei, K., & Tarighi, S. (2018). Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes. Applied Energy, 230, 1347–1379. https://doi.org/10.1016/j.apenergy.2018.09.006

    Article  CAS  Google Scholar 

  11. Jedsukontorn, T., Ueno, T., Saito, N., & Hunsom, M. (2018). Mechanistic aspect based on the role of reactive oxidizing species (ROS) in macroscopic level on the glycerol photooxidation over defected and defected-free TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 367, 270–281. https://doi.org/10.1016/J.JPHOTOCHEM.2018.08.030

    Article  CAS  Google Scholar 

  12. Achilleos, D. S., Yang, W., Kasap, H., Savateev, A., Markushyna, Y., Durrant, J. R., & Reisner, E. (2020). Solar reforming of biomass with homogeneous carbon dots. Angewandte Chemie International Edition, 59, 18184–18188. https://doi.org/10.1002/anie.202008217

    Article  CAS  PubMed  Google Scholar 

  13. Uekert, T., Kasap, H., & Reisner, E. (2019). Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. Journal of the Americal Chemical Society, 141, 15201–15210. https://doi.org/10.1021/jacs.9b06872

    Article  CAS  Google Scholar 

  14. Karimi Estahbanati, M. R., Feilizadeh, M., Attar, F., & Iliuta, M. C. (2021). Current developments and future trends in photocatalytic glycerol valorization: Process analysis. Reaction Chemistry and Engineering, 6(2), 197–219. https://doi.org/10.1039/D0RE00382D

    Article  CAS  Google Scholar 

  15. Wang, F. F., Shao, S., Liu, C. L., Xu, C. L., Yang, R. Z., & Dong, W. S. (2015). Selective oxidation of glycerol over Pt supported on mesoporous carbon nitride in base-free aqueous solution. Chemical Engineering Journal, 264, 336–343. https://doi.org/10.1016/j.cej.2014.11.115

    Article  CAS  Google Scholar 

  16. Hirasawa, S., Nakagawa, Y., & Tomishige, K. (2012). Selective oxidation of glycerol to dihydroxyacetone over a Pd–Ag catalyst. Catalysis Science and Technology, 2, 1150–1152. https://doi.org/10.1039/c2cy20062g

    Article  CAS  Google Scholar 

  17. Mancilla, F. J., Rojas, S. F., Gualdrón-Reyes, A. F., Carreño-Lizcano, M. I., Duarte, L. J., & Niño-Gómez, M. E. (2016). Improving the photoelectrocatalytic performance of boron-modified TiO2/Ti sol-gel-based electrodes for glycerol oxidation under visible illumination. RSC Advances, 6(52), 46668–46677. https://doi.org/10.1039/c6ra02806c

    Article  CAS  Google Scholar 

  18. Das, S., Ohkubo, T., Kasai, S., & Kozuka, Y. (2021). Deterministic influence of substrate-induced oxygen vacancy diffusion on Bi2WO6 thin film growth. Crystal Growth and Design, 21, 625–630. https://doi.org/10.1021/acs.cgd.0c01428

    Article  CAS  Google Scholar 

  19. Marinho, J. Z., Santos, L. M., Macario, L. R., Longo, E., Machado, A. E. H., Patrocinio, A. O. T., & Lima, R. C. (2015). Rapid preparation of (BiO)2CO3 nanosheets by microwave-assisted hydrothermal method with promising photocatalytic activity under UV–Vis light. Journal of the Brazilian Chemical Society, 26(3), 498–505. https://doi.org/10.5935/0103-5053.20150002

    Article  CAS  Google Scholar 

  20. Shad, N. A., Zahoor, M., Bano, K., Bajwa, S. Z., Amin, N., Ihsan, A., Soomro, R. A., Ali, A., Imran Arshad, M., Wu, A., Iqbal, M. Z., & Khan, W. S. (2017). Synthesis of flake-like bismuth tungstate (Bi2WO6) for photocatalytic degradation of coomassie brilliant blue (CBB). Inorganic Chemistry Communications, 86, 213–217. https://doi.org/10.1016/j.inoche.2017.10.022

    Article  CAS  Google Scholar 

  21. Alfaifi, B. Y., Tahir, A. A., & Upul Wijayantha, K. G. (2019). Fabrication of Bi2WO6 photoelectrodes with enhanced photoelectrochemical and photocatalytic performance. Solar Energy Materials and Solar Cells, 195, 134–141. https://doi.org/10.1016/j.solmat.2019.02.031

    Article  CAS  Google Scholar 

  22. Panmand, R. P., Sethi, Y. A., Kadam, S. R., Tamboli, M. S., Nikam, L. K., Ambekar, J. D., Park, C.-J., & Kale, B. B. (2015). Self-assembled hierarchical nanostructures of Bi2WO6 for hydrogen production and dye degradation under solar light. CrystEngComm, 17(1), 107–115. https://doi.org/10.1039/c4ce01968g

    Article  CAS  Google Scholar 

  23. Jiang, L., Wang, L., & Zhang, J. (2010). A direct route for the synthesis of nanometer-sized Bi2WO6 particles loaded on a spherical MCM-48 mesoporous molecular sieve. Chemical Communications, 46, 8067. https://doi.org/10.1039/c0cc01646b

    Article  CAS  PubMed  Google Scholar 

  24. Bilgin Simsek, E., Balta, Z., & Demircivi, P. (2019). Novel shungite based Bi2WO6 carbocatalyst with high photocatalytic degradation of tetracycline under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 380, 111849. https://doi.org/10.1016/J.JPHOTOCHEM.2019.05.012

    Article  CAS  Google Scholar 

  25. Shi, J., Liang, Y., Li, Z., & Fang, B. (2019). Synthesis, microstructure and photodegradation activity of bismuth tungsten oxides. ChemistrySelect, 4, 5010–5018. https://doi.org/10.1002/slct.201901323

    Article  CAS  Google Scholar 

  26. Luo, S., Noguchi, Y., Miyayama, M., & Kudo, T. (2001). Rietveld analysis and dielectric properties of Bi2WO6–Bi4Ti3O12 ferroelectric system. Materials Research Bulletin, 36, 531–540. https://doi.org/10.1016/S0025-5408(01)00516-5

    Article  CAS  Google Scholar 

  27. Song, Z., Dai, H., & Tong, J. (2015). One-step electrochemical synthesis of Bi3.84W0.16O6.24 with superior photocatalytic activities. RSC Advances, 5(26), 20234–20237. https://doi.org/10.1039/c5ra00056d

    Article  CAS  Google Scholar 

  28. Li, X., Wang, L., Shi, W., Song, C., Xu, D., & Liu, J. (2015). Morphological evolution and visible light driven degradation of tetracycline by Bi3.84W0.16O6.24 nanostructures. RSC Advances, 5(82), 66940–66946. https://doi.org/10.1039/c5ra10709a

    Article  CAS  Google Scholar 

  29. Song, C., Li, X., Wang, L., & Shi, W. (2016). Fabrication, characterization and response surface method (RSM) optimization for tetracycline photodegration by Bi3.84W0.16O6.24-graphene oxide (BWO-GO). Scientific Reports, 6, 1–12. https://doi.org/10.1038/srep37466

    Article  CAS  Google Scholar 

  30. Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  31. Sakata, M., & Cooper, M. J. (1979). An analysis of the Rietveld refinement method. Journal of Applied Crystallography, 12, 554–563. https://doi.org/10.1107/S002188987901325X

    Article  CAS  Google Scholar 

  32. Larson, A. C., & Von Dreele, R. B. (2004). General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR, pp. 86–748.

  33. Toby, B. (2001). EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210–213. https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  34. Patterson, E. M., Shelden, C. E., & Stockton, B. H. (1977). Kubelka–Munk optical-properties of a barium-sulfate white reflectante standard. Applied Optics, 16, 729–732. https://doi.org/10.1364/ao.16.000729

    Article  CAS  PubMed  Google Scholar 

  35. Hatchard, C. G., & Parker, C. A. (1956). A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 235, 518–536. https://doi.org/10.1098/rspa.1956.0102

    Article  CAS  Google Scholar 

  36. Faustino, L. A., Hora Machado, A. E., & Patrocinio, A. O. T. (2018). Photochemistry of fac-[Re(CO)3(dcbH2)(trans-stpy)]+: New insights on the isomerization mechanism of coordinated stilbene-like ligands. Inorganic Chemistry, 57, 2933–2941. https://doi.org/10.1021/acs.inorgchem.8b00093

    Article  CAS  PubMed  Google Scholar 

  37. De, M., Chaves, J. S., Enesis De Oliveira Lima, G., De Assis, M., De, A., Mendonça, J. S., Mateus Pinatti, I., Fernandes Gouveia, A., Lúcia, I., Rosa, V., Longo, E., Aur, M., Almeida, P., Rodrigues, T. C., & Franco, S. (2019). Environmental remediation properties of Bi2WO6 hierarchical nanostructure: A joint experimental and theoretical investigation. Journal of Solid State Chemistry, 274, 270–279. https://doi.org/10.1016/j.jssc.2019.03.031

    Article  CAS  Google Scholar 

  38. Ding, X., Zhao, K., & Zhang, L. (2014). Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions. Environmental Science and Technology, 48, 5823–5831. https://doi.org/10.1021/es405714q

    Article  CAS  PubMed  Google Scholar 

  39. Chen, S., Tang, W., Hu, Y., & Fu, X. (2013). The preparation and characterization of composite bismuth tungsten oxide with enhanced visible light photocatalytic activity. CrystEngComm, 15(39), 7943–7950. https://doi.org/10.1039/c3ce41036f

    Article  CAS  Google Scholar 

  40. Hou, L., Hua, H., Gan, L., Liu, Y., Yuan, C., & Liu, S. (2015). Hydrothermal synthesis of visible-light-driven hierarchical Bi3.84W0.16O6.24 photocatalysts toward efficient degradation of methyl orange. Journal of Nanoparticle Research, 17(183), 1–10. https://doi.org/10.1007/s11051-015-2994-5

    Article  CAS  Google Scholar 

  41. Gupta, H. C., & Archana, V. L. (2011). Lattice dynamical investigations for Raman and infrared frequencies of Bi2WO6. Journal of Molecular Structure, 1005, 53–58. https://doi.org/10.1016/j.molstruc.2011.08.017

    Article  CAS  Google Scholar 

  42. Xu, C., Wei, X., Guo, Y., Wu, H., Ren, Z., Xu, G., Shen, G., & Han, G. (2009). Surfactant-free synthesis of Bi2WO6 multilayered disks with visible-light-induced photocatalytic activity. Materials Research Bulletin, 44, 1635–1641. https://doi.org/10.1016/J.MATERRESBULL.2009.04.012

    Article  CAS  Google Scholar 

  43. Jiang, W., Huangfu, T., Yang, X., Bao, L., Liu, Y., Xu, G., & Han, G. (2019). Surfactant-free hydrothermal synthesis of hierarchical flower-like Bi2WO6 mesosphere nanostructures with excellent visible-light photocatalytic activity. CrystEngComm, 21(41), 6293–6300. https://doi.org/10.1039/c9ce01170f

    Article  CAS  Google Scholar 

  44. Maczka, M., Macalik, L., Hermanowicz, K., Kepiński, L., & Tomaszewski, P. (2010). Phonon properties of nanosized bismuth layered ferroelectric material-Bi2WO6. Journal of Raman Spectroscopy, 41(9), 1059–1066. https://doi.org/10.1002/jrs.2526

    Article  CAS  Google Scholar 

  45. Dittmer, A., Menze, J., Mei, B., Strunk, J., Luftman, H. S., Gutkowski, R., Wachs, I. E., Schuhmann, W., & Muhler, M. (2016). Surface structure and photocatalytic properties of Bi2WO6 nanoplatelets modified by Molybdena Islands from chemical vapor deposition. The Journal of Physical Chemistry C, 120(32), 18191–18200. https://doi.org/10.1021/acs.jpcc.6b07007

    Article  CAS  Google Scholar 

  46. Mączka, M., Macalik, L., & Kojima, S. (2011). Temperature-dependent Raman scattering study of cation-deficient Aurivillius phases: Bi2WO6 and Bi2W2O9. Journal of Physics: Condensed Matter, 23(40), 405902. https://doi.org/10.1088/0953-8984/23/40/405902

    Article  CAS  PubMed  Google Scholar 

  47. Zou, J.-P., Ma, J., Luo, J.-M., Yu, J., He, J., Meng, Y., Luo, Z., Bao, S.-K., Liu, H.-L., Luo, S.-L., Luo, X.-B., Chen, T.-C., & Suib, S. L. (2015). Fabrication of novel heterostructured few layered WS2-Bi2WO6/Bi3.84W0.16O6.24 composites with enhanced photocatalytic performance. Applied Catalysis B: Environmental, 179, 220–228. https://doi.org/10.1016/j.apcatb.2015.05.031

    Article  CAS  Google Scholar 

  48. Guo, X., Wu, D., Long, X., Zhang, Z., Wang, F., Ai, G., & Liu, X. (2020). Nanosheets-assembled Bi2WO6 microspheres with efficient visible-light-driven photocatalytic activities. Materials Characterization, 163, 110297. https://doi.org/10.1016/j.matchar.2020.110297

    Article  CAS  Google Scholar 

  49. Zhang, P., Hua, X., Teng, X., Liu, D., Qin, Z., & Ding, S. (2016). CTAB assisted hydrothermal synthesis of lamellar Bi2WO6 with superior photocatalytic activity for rhodamine b degradation. Materials Letters, 185, 275–277. https://doi.org/10.1016/j.matlet.2016.08.148

    Article  CAS  Google Scholar 

  50. Mann, A. K. P., Steinmiller, E. M. P., & Skrabalak, S. E. (2012). Elucidating the structure-dependent photocatalytic properties of Bi2WO6: A synthesis guided investigation. Dalton Transactions, 41(26), 7939–7945. https://doi.org/10.1039/c2dt30097d

    Article  CAS  PubMed  Google Scholar 

  51. Komaraiah, D., Radha, E., Sivakumar, J., Ramana Reddy, M. V., & Sayanna, R. (2020). Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Optical Materials, 108, 110401. https://doi.org/10.1016/j.optmat.2020.110401

    Article  CAS  Google Scholar 

  52. Tu, N., Van Bui, H., Trung, D. Q., Duong, A. T., Thuy, D. M., Nguyen, D. H., Nguyen, K. T., & Huy, P. T. (2019). Surface oxygen vacancies of ZnO: A facile fabrication method and their contribution to the photoluminescence. Journal of Alloys and Compounds, 791, 22–729. https://doi.org/10.1016/j.jallcom.2019.03.395

    Article  CAS  Google Scholar 

  53. Marinho, J. Z., de Paula, L. F., Longo, E., Patrocinio, A. O. T., & Lima, R. C. (2019). Effect of Gd3+ doping on structural and photocatalytic properties of ZnO obtained by facile microwave-hydrothermal method. SN Applied Sciences, 1(359), 1–13. https://doi.org/10.1007/s42452-019-0359-x

    Article  CAS  Google Scholar 

  54. Al-Azri, Z. H. N., Chen, W. T., Chan, A., Jovic, V., Ina, T., Idriss, H., & Waterhouse, G. I. N. (2015). The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol–water mixtures. Journal of Catalysis, 329, 355–367. https://doi.org/10.1016/j.jcat.2015.06.005

    Article  CAS  Google Scholar 

  55. Chung, Y. H., Han, K., Lin, C. Y., O’Neill, D., Mul, G., Mei, B., & Yang, C. M. (2020). Photocatalytic hydrogen production by photo-reforming of methanol with one-pot synthesized Pt-containing TiO2 photocatalysts. Catalysis Today, 356, 95–100. https://doi.org/10.1016/j.cattod.2019.07.042

    Article  CAS  Google Scholar 

  56. Jones, I. C., Sharman, G. J., & Pidgeon, J. (2005). 1H and 13C NMR data to aid the identification and quantification of residual solvents by NMR spectroscopy. Magnetic Resonance in Chemistry, 43, 497–509. https://doi.org/10.1002/mrc.1578

    Article  CAS  PubMed  Google Scholar 

  57. Moret, S., Dyson, P. J., & Laurenczy, G. (2013). Direct, in situ determination of pH and solute concentrations in formic acid dehydrogenation and CO2 hydrogenation in pressurised aqueous solutions using 1H and 13C NMR spectroscopy. Dalton Transactions, 42(13), 4353–4356. https://doi.org/10.1039/c3dt00081h

    Article  CAS  PubMed  Google Scholar 

  58. Braslavsky, S. E., Braun, A. M., Cassano, A. E., Emeline, A. V., Litter, M. I., Palmisano, L., Parmon, V. N., & Serpone, N. (2011). Glossary of terms used in photocatalysis and radiation catalysis (IUPAC recommendations 2011). Pure and Applied Chemistry, 83, 931–1014. https://doi.org/10.1351/PAC-REC-09-09-36

    Article  Google Scholar 

  59. Zhang, Y., Ciriminna, R., Palmisano, G., Xu, Y. J., & Pagliaro, M. (2014). Sol-gel entrapped visible light photocatalysts for selective conversions. RSC Advances, 4, 18341–18346. https://doi.org/10.1039/C4RA01031K

    Article  CAS  Google Scholar 

  60. Daskalaki, V. M., & Kondarides, D. I. (2009). Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catalysis Today, 144, 75–80. https://doi.org/10.1016/j.cattod.2008.11.009

    Article  CAS  Google Scholar 

  61. Zhang, M., Sun, R., Li, Y., Shi, Q., Xie, L., Chen, J., Xu, X., Shi, H., & Zhao, W. (2016). High H2 evolution from quantum Cu(II) nanodot-doped two-dimensional ultrathin TiO2 nanosheets with dominant exposed 001 facets for reforming glycerol with multiple electron transport pathways. Journal of Physical Chemistry C, 120(20), 10746–10756. https://doi.org/10.1021/acs.jpcc.6b01030

    Article  CAS  Google Scholar 

  62. López-Tenllado, F. J., Hidalgo-Carrillo, J., Montes, V., Marinas, A., Urbano, F. J., Marinas, J. M., Ilieva, L., Tabakova, T., & Reid, F. (2017). A comparative study of hydrogen photocatalytic production from glycerol and propan-2-ol on M/TiO2 systems (M=Au, Pt, Pd). Catalysis Today, 280, 58–64. https://doi.org/10.1016/J.CATTOD.2016.05.009

    Article  Google Scholar 

  63. Bednarczyk, K., Stelmachowski, M., & Gmurek, M. (2019). The influence of process parameters on photocatalytic hydrogen production. Environmental Progress and Sustainable Energy, 38, 680–687. https://doi.org/10.1002/EP.12998

    Article  CAS  Google Scholar 

  64. Deas, R., Pearce, S., Goss, K., Wang, Q., Chen, W. T., & Waterhouse, G. I. N. (2020). Hierarchical Au/TiO2 nanoflower photocatalysts with outstanding performance for alcohol photoreforming under UV irradiation. Applied Catalysis A: General, 602, 117706. https://doi.org/10.1016/J.APCATA.2020.117706

    Article  CAS  Google Scholar 

  65. Jung, M., Hart, J. N., Boensch, D., Scott, J., Ng, Y. H., & Amal, R. (2016). Hydrogen evolution via glycerol photoreforming over Cu–Pt nanoalloys on TiO2. Applied Catalysis A: General, 518, 221–230. https://doi.org/10.1016/J.APCATA.2015.10.040

    Article  CAS  Google Scholar 

  66. Pai, M. R., Banerjee, A. M., Rawool, S. A., Singhal, A., Nayak, C., Ehrman, S. H., Tripathi, A. K., & Bharadwaj, S. R. (2016). A comprehensive study on sunlight driven photocatalytic hydrogen generation using low cost nanocrystalline Cu–Ti oxides. Solar Energy Materials and Solar Cells, 154, 104–120. https://doi.org/10.1016/J.SOLMAT.2016.04.036

    Article  CAS  Google Scholar 

  67. Yang, Z., Zhong, W., Chen, Y., Wang, C., Mo, S., Zhang, J., Shu, R., & Song, Q. (2020). Improving glycerol photoreforming hydrogen production over Ag2O–TiO2 catalysts by enhanced colloidal dispersion stability. Frontiers in Chemistry, 8, 342. https://doi.org/10.3389/FCHEM.2020.00342/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taylor, S., Mehta, M., & Samokhvalov, A. (2014). Production of hydrogen by glycerol photoreforming using binary nitrogen–metal-promoted N–M–TiO2 photocatalysts. ChemPhysChem, 15(5), 942–949. https://doi.org/10.1002/CPHC.201301140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, RED-00520-16, APQ-01044-21), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 406392/2018-8; 307804/2021-6), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Grupo de Materiais Inorgânicos do Triângulo (GMIT), a research group supported by FAPEMIG (APQ-00330-14). AOTP is thankful to the Alexander von Humboldt Foundation for the equipment subsidy grant and to PhosAgro/UNESCO/IUPAC research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio O. T. Patrocinio.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 743 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinho, J.Z., Nascimento, L.L., Santos, A.L.R. et al. On the influence of hydrothermal treatment pH on the performance of Bi2WO6 as photocatalyst in the glycerol photoreforming. Photochem Photobiol Sci 21, 1659–1675 (2022). https://doi.org/10.1007/s43630-022-00249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00249-5

Keywords

Navigation