Skip to main content
Log in

Photochemical processes in flavo-enzymes as a probe for active site dynamics: TrmFO of Thermus thermophilus

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Quenching of flavin fluorescence by electron transfer from neighboring aromatic residues is ubiquitous in flavoproteins. Apart from constituting a functional process in specific light-active systems, time-resolved spectral characterization of the process can more generally be employed as a probe for the active site configuration and dynamics. In the C51A variant of the bacterial RNA-transforming flavoenzyme TrmFO from the bacterium Thermus thermophilus, fluorescence is very short-lived (~ 1 ps), and close-by Tyr343 is known to act as the main quencher, as confirmed here by the very similar dynamics observed in protein variants with modified other potential quenchers, Trp283 and Trp214. When Tyr343 is modified to redox-inactive phenylalanine, slower and highly multiphasic kinetics are observed on the picosecond-nanosecond timescale, reflecting heterogeneous electron donor–acceptor configurations. We demonstrate that Trp214, which is located on a potentially functional flexible loop, contributes to electron donor quenching in this variant. Contrasting with observations in other nucleic acid-transforming enzymes, these kinetics are strikingly temperature-independent. This indicates (a) near-barrierless electron transfer reactions and (b) no exchange between different configurations on the timescale up to at least 2 ns, despite the presumed flexibility of Trp214. Results of extensive molecular dynamics simulations are presented to explain this unexpected finding in terms of slowly exchanging protein configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Miura, R. (2001). Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity. Chemical Record, 1(3), 183–194. https://doi.org/10.1002/tcr.1007

    Article  CAS  PubMed  Google Scholar 

  2. van den Berg, P. A. W., Feenstra, K. A., Mark, A. E., Berendsen, H. J. C., & Visser, A. J. W. G. (2002). Dynamic conformations of flavin adenine dinucleotide: simulated molecular dynamics of the flavin cofactor related to the time-resolved fluorescence characteristics. The Journal of Physical Chemistry B, 106(34), 8858–8869. https://doi.org/10.1021/jp020356s

    Article  CAS  Google Scholar 

  3. Brazard, J., Usman, A., Lacombat, F., Ley, C., Martin, M. M., & Plaza, P. (2011). New insights into the ultrafast photophysics of oxidized and reduced FAD in solution. Journal of Physical Chemistry A, 115(15), 3251–3262. https://doi.org/10.1021/jp110741y

    Article  CAS  Google Scholar 

  4. Aubert, C., Mathis, P., Eker, A. P. M., & Brettel, K. (1999). Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans. Proceedings of the National academy of Sciences of the United States of America, 96(10), 5423–5427

    Article  CAS  Google Scholar 

  5. Giovani, B., Byrdin, M., Ahmad, M., & Brettel, K. (2003). Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Natural Structural Biology, 10(6), 489–490

    Article  CAS  Google Scholar 

  6. Lacombat, F., Espagne, A., Dozova, N., Plaza, P., Muller, P., Brettel, K., et al. (2019). Ultrafast oxidation of a tyrosine by proton-coupled electron transfer promotes light activation of an animal-like cryptochrome. Journal of the American Chemical Society, 141(34), 13394–13409. https://doi.org/10.1021/jacs.9b03680

    Article  CAS  PubMed  Google Scholar 

  7. Lukacs, A., Brust, R., Haigney, A., Laptenok, S. P., Addison, K., Gil, A., et al. (2014). BLUF domain function does not require a metastable radical intermediate state. Journal of the American Chemical Society, 136(12), 4605–4615. https://doi.org/10.1021/ja4121082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mathes, T., van Stokkum, I. H., Kennis, J. T. (2014). Photoactivation mechanisms of flavin-binding photoreceptors revealed through ultrafast spectroscopy and global analysis methods. In Weber, S., Schleicher, E. (Eds.), Flavins and Flavoproteins: Methods and Protocols. Springer

  9. Sorigué, D., Légeret, B., Cuiné, S., Blangy, S., Moulin, S., Billon, E., et al. (2017). An algal photoenzyme converts fatty acids to hydrocarbons. Science, 357(6354), 903–907. https://doi.org/10.1126/science.aan6349

    Article  CAS  PubMed  Google Scholar 

  10. Sorigué, D., Hadjidemetriou, K., Blangy, S., Gotthard, G., Bonvalet, A., Coquelle, N., et al. (2021). Mechanism and dynamics of fatty acid photodecarboxylase. Science, 372, eabd5687

    Article  Google Scholar 

  11. Bialas, C., Barnard, D. T., Auman, D. B., Mcbride, R. A., Jarocha, L. E., Hore, P. J., et al. (2019). Ultrafast flavin/tryptophan radical pair kinetics in a magnetically sensitive artificial protein. Physical Chemistry, 21(25), 13453–13461

    CAS  Google Scholar 

  12. Nag, L., Lukacs, A., & Vos, M. H. (2019). Short-lived radical intermediates in the photochemistry of glucose oxidase. ChemPhysChem, 20(14), 1793–1798. https://doi.org/10.1002/cphc.201900329

    Article  CAS  PubMed  Google Scholar 

  13. Ernst, S., Rovida, S., Mattevi, A., Fetzner, S., & Drees, S. L. (2020). Photoinduced monooxygenation involving NAD(P)H-FAD sequential single-electron transfer. Nature Comm, 11(1), 2600. https://doi.org/10.1038/s41467-020-16450-y

    Article  CAS  Google Scholar 

  14. Dozova, N., Lacombat, F., Bou-Nader, C., Hamdane, D., & Plaza, P. (2019). Ultrafast photoinduced flavin dynamics in the unusual active site of the tRNA methyltransferase TrmFO. Physical Chemistry Chemical Physics: PCCP, 21(17), 8743–8756. https://doi.org/10.1039/c8cp06072j

    Article  CAS  PubMed  Google Scholar 

  15. Nag, L., Sournia, P., Myllykallio, H., Liebl, U., & Vos, M. H. (2017). Identification of the TyrOH●+ radical cation in the flavoenzyme TrmFO. Journal of the American Chemical Society, 139(33), 11500–11505. https://doi.org/10.1021/jacs.7b04586

    Article  CAS  PubMed  Google Scholar 

  16. Mataga, N., Chosrowjan, H., Shibata, Y., Tanaka, F., Nishina, Y., & Shiga, K. (2000). Dynamics and mechanisms of ultrafast fluorescence quenching reactions of flavin chromophores in protein nanospace. The Journal of Physical Chemistry B, 104(45), 10667–10677

    Article  CAS  Google Scholar 

  17. Zhong, D., & Zewail, A. H. (2001). Femtosecond dynamics of flavoproteins: charge separation and recombination in riboflavin (vitamin B2)-binding protein and in glucose oxidase enzyme. Proceedings of the National academy of Sciences of the United States of America, 98, 11867–11872

    Article  CAS  Google Scholar 

  18. Laptenok, S. P., Bouzhir-Sima, L., Lambry, J.-C., Myllykallio, H., Liebl, U., & Vos, M. H. (2013). Ultrafast real time visualization of the active site flexibility of the flavoenzyme thymidylate synthase ThyX. Proceedings of the National academy of Sciences of the United States of America, 110, 8924–8929

    Article  CAS  Google Scholar 

  19. Yang, H., Luo, G., Karnchanaphanurach, P., Louie, T.-M., Rech, I., Cova, S., et al. (2003). Protein conformational dynamics probed by single-molecule electron transfer. Science, 302(5643), 262–266. https://doi.org/10.1126/science.1086911

    Article  CAS  PubMed  Google Scholar 

  20. Moser, C. C., Anderson, J. L. R., & Dutton, P. L. (2010). Guidelines for tunneling in enzymes. Biochimica et Biophysica Acta, 1797(9), 1573–1586

    Article  CAS  Google Scholar 

  21. Zhuang, B., Seo, D., Aleksandrov, A., & Vos, M. H. (2021). Characterization of light-induced short-lived interacting radicals in the active site of flavoprotein ferredoxin-NADP+ oxidoreductase. Journal of the American Chemical Society, 143, 2457–2768

    Article  Google Scholar 

  22. Pirisi, K., Nag, L., Fekete, Z., Iuliano, J. N., Tollentino Collado, J., Clark, I. P., et al. (2021). Identification of the vibrational marker of tyrosine cation radical using ultrafast transient infrared spectroscopy of flavoprotein systems. Photochemical and Photobiological Sciences, 20, 369–378

    Article  Google Scholar 

  23. Hamdane, D., Argentini, M., Cornu, D., Myllykallio, H., Skouloubris, S., Hui-Bon-Hoa, G., et al. (2011). Insights into Folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis. Journal of Biological Chemistry, 286(42), 36268–36280. https://doi.org/10.1074/jbc.M111.256966

    Article  CAS  Google Scholar 

  24. Urbonavicius, J., Skouloubris, S., Myllykallio, H., & Grosjean, H. (2005). Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria -evolutionary implications. Nucleic Acids Research, 33(13), 3955–3964

    Article  CAS  Google Scholar 

  25. Nishimasu, H., Ishitani, R., Yamashita, K., Iwashita, C., Hirata, A., Hori, H., et al. (2009). Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase. Proceedings of the National academy of Sciences of the United States of America, 106(20), 8180–8185. https://doi.org/10.1073/pnas.0901330106

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sournia, P. (2016). La méthylation flavine-dépendante d’acides nucléiques : aspects évolutifs, métaboliques, biochimiques et spectroscopiques. Ecole Polytechnique.

    Google Scholar 

  27. Hamdane, D., Bruch, E., Un, S., Field, M., & Fontecave, M. (2013). Activation of a unique flavin-dependent tRNA-methylating agent. Biochemistry, 52(49), 8949–8956. https://doi.org/10.1021/bi4013879

    Article  CAS  PubMed  Google Scholar 

  28. Renger, G. (2013). Apparatus and mechanism of photosynthetic water splitting as nature’s blueprint for efficient solar energy exploitation. In R. Razeghifard (Ed.), Natural and artificial photosynthesis.John Wiley and Son.

    Google Scholar 

  29. Gauden, M., van Stokkum, I. H. M., Key, J. M., Lührs, D. C., van Grondelle, R., Hegemann, P., et al. (2006). Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor. Proceedings of the National academy of Sciences of the United States of America, 103(29), 10895–10900. https://doi.org/10.1073/pnas.0600720103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laptenok, S. P., Nuernberger, P., Lukacs, A., & Vos, M. H. (2014). Subpicosecond Kerr-gate spectrofluorometry. In Y. Engelborghs & A. J. W. G. Visser (Eds.), Methods in molecular biology, fluorescence spectroscopy and microscopy: methods and protocols.Humana Press.

    Google Scholar 

  31. Lambry, J.-C., Stranava, M., Lobato, L., Martinkova, M., Shimizu, T., Liebl, U., et al. (2016). Ultrafast spectroscopy evidence for picosecond ligand exchange at the binding site of a heme protein: heme-based sensor YddV. Journal of Physical Chemistry Letters, 7(1), 69–74. https://doi.org/10.1021/acs.jpclett.5b02517

    Article  CAS  Google Scholar 

  32. Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M., & van Stokkum, I. H. M. (2012). Glotaran: a java-based graphical user interface for the R package TIMP. J Stat Software, 49(3), 2

    Article  Google Scholar 

  33. Webb, B., & Sali, A. (2016). Comparative protein structure modeling using modeller. Curr Protoc Bioinform, 54(1), 561–5637. https://doi.org/10.1002/cpbi.3

    Article  Google Scholar 

  34. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  35. Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., et al. (2009). CHARMM: the biomolecular simulation program. J Comp Chem, 30(10), 1545–1614

    Article  CAS  Google Scholar 

  36. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  37. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., et al. (2005). Scalable molecular dynamics with NAMD. J Comp Chem, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  Google Scholar 

  38. Huang, J., & MacKerell, A. D., Jr. (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comp Chem, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354

    Article  CAS  Google Scholar 

  39. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  40. Neria, E., Fischer, S., & Karplus, M. (1996). Simulation of activation free energies in molecular systems. The Journal of Chemical Physics, 105(5), 1902–1921. https://doi.org/10.1063/1.472061

    Article  CAS  Google Scholar 

  41. Aleksandrov, A. (2019). A molecular mechanics model for Flavins. J Comp Chem, 40(32), 2834–2842. https://doi.org/10.1002/jcc.26061

    Article  CAS  Google Scholar 

  42. Sugita, Y., & Okamoto, Y. (1999). Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 314(1), 141–151. https://doi.org/10.1016/S0009-2614(99)01123-9

    Article  CAS  Google Scholar 

  43. Patriksson, A., & van Spoel, D. (2008). A temperature predictor for parallel tempering simulations. Physical Chemistry Chemical Physics: PCCP, 10(15), 2073–2077. https://doi.org/10.1039/B716554D

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B. Z. is supported by a China Scholarship Council PhD scholarship. Part of this work was performed using High Performance Computing resources from Grand Equipement National pour le Calcul Intensif [Centre de Calcul Recherche et Technologie/Centre Informatique National de l’Enseignement Supérieur/Institut du Développement et des Ressources en Informatique Scientifique] (Grant 2018-2019, project number A0020706913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten H. Vos.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Pushing the limits of flash photolysis to unravel the secrets of biological electron and proton transfer - a topical issue in honour of Klaus Brettel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, B., Nag, L., Sournia, P. et al. Photochemical processes in flavo-enzymes as a probe for active site dynamics: TrmFO of Thermus thermophilus. Photochem Photobiol Sci 20, 663–670 (2021). https://doi.org/10.1007/s43630-021-00052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00052-8

Keywords

Navigation