Skip to main content
Log in

Feasibility of the Inner-Side-Out Use of the LC-DCP for Periprosthetic Femoral Fracture in Total Hip Arthroplasty

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

The optimal technique for plate fixation to treat type B and C periprosthetic femoral fractures (PFFs) is unclear. The purpose of this study is to evaluate the radiographic results of inner-side-out limited contact dynamic compression plate (LC-DCP) to treat PFFs during or after total hip arthroplasty (THA).

Methods

This retrospective study comprised of four men and six women with an average age of 64.7 years who underwent open reduction and internal fixation with an inner-side-out LC-DCP technique to treat PFFs; the reduction was maintained preliminary with the use of contoured plate and cables, and the grooves on the undersurface of LC-DCP for limited contact was used to hold and prevent the cables from slippage during tightening the cables. There were five intraoperative and five postoperative PFFs after THA. According to the Vancouver classification, the intraoperative PFFs included type B2 in two, B3 in one and C3 in two patients while postoperative PFFs were categorized into type B1 in one, type B2 in two and type C in two patients. The mean follow-up duration was 5.9 years (range 1–10.4). We evaluated radiographic union and complications after index operation.

Results

All patients demonstrated radiographic bone union at an average follow-up duration of 4.4 months (range 3–8). Two patients showed stem subsidence after revision THA and one patient demonstrated a subsequent peri-implant fracture around the distal end of plate after union of the initial PPF; one patient underwent re-revision THA for stem loosening while another patient went through refixation for the peri-implant fracture. There was no nonunion, infection, nerve injury, or dislocation.

Conclusion

The inner-side-out LC-DCP technique showed satisfactory radiographic outcome. In certain situations where locking plates are not available, this technique might be a useful alternative for treating type B and C PFFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

available at the time, it was refixed with a antomical pre-shaped locking plate using less invasive plate-osteosynthesis technique. At the final follow-up, bone union was shown on the anteroposterior view of right femur (d)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park, S. K., Kim, Y. G., & Kim, S. Y. (2011). Treatment of periprosthetic femoral fractures in hip arthroplasty. Clinics in Orthopedic Surgery., 3, 101–106.

    Article  Google Scholar 

  2. Abdel, M. P., Watts, C. D., Houdek, M. T., Lewallen, D. G., & Berry, D. J. (2016). Epidemiology of periprosthetic fracture of the femur in 32,644 primary total hip arthroplasties: A 40-year experience. The Bone and Joint Journal., 98, 461–467.

    Article  Google Scholar 

  3. Moloney, G. B., Westrick, E. R., Siska, P. A., & Tarkin, I. S. (2014). Treatment of periprosthetic femur fractures around a well-fixed hip arthroplasty implant: Span the whole bone. Archives of Orthopaedic and Trauma Surgery., 134, 9–14.

    Article  Google Scholar 

  4. Kim, M. W., Chung, Y. Y., Lee, J. H., & Park, J. H. (2015). Outcomes of surgical treatment of periprosthetic femoral fractures in cementless hip arthroplasty. Hip & Pelvis., 27, 146–151.

    Article  Google Scholar 

  5. Chakravarthy, J., Bansal, R., & Cooper, J. (2007). Locking plate osteosynthesis for Vancouver Type B1 and Type C periprosthetic fractures of femur: A report on 12 patients. Injury, 38, 725–733.

    Article  Google Scholar 

  6. Lee, J. M., Kim, T. S., & Kim, T. H. (2018). Treatment of periprosthetic femoral fractures following hip arthroplasty. Hip & pelvis., 30, 78–85.

    Article  Google Scholar 

  7. Chakrabarti, D., Thokur, N., & Ajnin, S. (2019). Cable plate fixation for Vancouver Type-B1 periprosthetic femoral fractures—Our experience and identification of a subset at risk of non-union. Injury, 50, 2301–2305.

    Article  Google Scholar 

  8. Lever, J. P., Zdero, R., Nousiainen, M. T., Waddell, J. P., & Schemitsch, E. H. (2010). The biomechanical analysis of three plating fixation systems for periprosthetic femoral fracture near the tip of a total hip arthroplasty. Journal of Orthopaedic Surgery and Research., 5, 45.

    Article  Google Scholar 

  9. Yang, X. J., Fei, J., Wang, Z. G., Yu, H. J., & Sun, J. (2005). Experimental study and clinical observation of minimum-contact plate in long bone fracture. Chinese Journal of Traumatology., 8, 105–110.

    Google Scholar 

  10. Perren, S. M., Klaue, K., Pohler, O., Predieri, M., Steinemann, S., & Gautier, E. (1990). The limited contact dynamic compression plate (LC-DCP). Archives of Orthopaedic and Trauma Surgery., 109, 304–310.

    Article  CAS  Google Scholar 

  11. Brady, O. H., Kerry, R., Masri, B. A., Garbuz, D. S., & Duncan, C. P. (1999). The vancouver classification of periprosthetic fractures of the Hip: A rational approach to treatment. Techniques in Orthopaedics., 14, 107–114.

    Article  Google Scholar 

  12. Moore, R. E., Baldwin, K., Austin, M. S., & Mehta, S. (2014). A systematic review of open reduction and internal fixation of periprosthetic femur fractures with or without allograft strut, cerclage, and locked plates. Journal of Arthroplasty, 29, 872–876.

    Article  Google Scholar 

  13. Bottlang, M., Schemitsch, C. E., Nauth, A., et al. (2015). Biomechanical concepts for fracture fixation. Journal of Orthopaedic Trauma., 29(Suppl 12), S28–33.

    Article  Google Scholar 

  14. Tsiridis, E., Narvani, A. A., Timperley, J. A., & Gie, G. A. (2005). Dynamic compression plates for Vancouver type B periprosthetic femoral fractures: a 3-year follow-up of 18 cases. Acta Orthopaedica, 76, 531–537.

    Article  Google Scholar 

  15. Strom, A. M., Garcia, T. C., Jandrey, K., Huber, M. L., & Stover, S. M. (2010). In vitro mechanical comparison of 2.0 and 2.4 limited-contact dynamic compression plates and 2.0 dynamic compression plates of different thicknesses. Veterinary Surgery., 39, 824–828.

    Article  Google Scholar 

  16. Knutsen, A. R., Lau, N., Longjohn, D. B., Ebramzadeh, E., & Sangiorgio, S. N. (2017). Periprosthetic femoral bone loss in total hip arthroplasty: systematic analysis of the effect of stem design. Hip International, 27, 26–34.

    Article  Google Scholar 

  17. Randelli, F., Pace, F., Priano, D., Giai Via, A., & Randelli, P. (2018). Re-fractures after periprosthetic femoral fracture: A difficult to treat growing evidence. Injury, 49(Suppl 3), S43–S47.

    Article  Google Scholar 

  18. Kinov, P., Volpin, G., Sevi, R., Tanchev, P. P., Antonov, B., & Hakim, G. (2015). Surgical treatment of periprosthetic femoral fractures following hip arthroplasty: Our institutional experience. Injury, 46, 1945–1950.

    Article  Google Scholar 

  19. Min, B. W., Cho, C. H., Son, E. S., Lee, K. J., Lee, S. W., & Min, K. K. (2018). Minimally invasive plate osteosynthesis with locking compression plate in patients with Vancouver type B1 periprosthetic femoral fractures. Injury, 49, 1336–1340.

    Article  Google Scholar 

  20. Froberg, L., Troelsen, A., & Brix, M. (2012). Periprosthetic Vancouver type B1 and C fractures treated by locking-plate osteosynthesis: Fracture union and reoperations in 60 consecutive fractures. Acta Orthopaedica, 83, 648–652.

    Article  Google Scholar 

  21. Taylor, B. C., Triplet, J. J., & El-Sabawi, T. (2019). Off-label use in orthopaedic surgery. The Journal of the American Academy of Orthopaedic Surgeons., 27, e767–e774.

    Article  Google Scholar 

  22. Augat, P., & von Rüden, C. (2018). Evolution of fracture treatment with bone plates. Injury, 49, S2–S7.

    Article  Google Scholar 

  23. Ahern, B. J., Showalter, B. L., Elliott, D. M., Richardson, D. W., & Getman, L. M. (2013). In vitro biomechanical comparison of a 4.5 mm narrow locking compression plate construct versus a 4.s5 mm limited contact dynamic compression plate construct for arthrodesis of the equine proximal interphalangeal joint. Veterinary Surgery., 42, 335–339.

    Article  Google Scholar 

  24. Snow, M., Thompson, G., & Turner, P. G. (2008). A mechanical comparison of the locking compression plate (LCP) and the low contact-dynamic compression plate (DCP) in an osteoporotic bone model. Journal of Orthopaedic Trauma., 22, 121–125.

    Article  Google Scholar 

  25. Gardner, M. J., Brophy, R. H., Campbell, D., et al. (2005). The mechanical behavior of locking compression plates compared with dynamic compression plates in a cadaver radius model. Journal of Orthopaedic Trauma., 19, 597–603.

    Article  Google Scholar 

  26. Wood, G. C., Naudie, D. R., McAuley, J., & McCalden, R. W. (2011). Locking compression plates for the treatment of periprosthetic femoral fractures around well-fixed total hip and knee implants. Journal of Arthroplasty, 26, 886–892.

    Article  Google Scholar 

  27. Singh, A. K., Narsaria, N., Seth, R. R., & Garg, S. (2014). Plate osteosynthesis of fractures of the shaft of the humerus: Comparison of limited contact dynamic compression plates and locking compression plates. Journal of Orthopaedics and Traumatology., 15, 117–122.

    Article  Google Scholar 

  28. Saikia, K., Bhuyan, S., Bhattacharya, T., Borgohain, M., Jitesh, P., & Ahmed, F. (2011). Internal fixation of fractures of both bones forearm: Comparison of locked compression and limited contact dynamic compression plate. Indian Journal of Orthopaedics., 45, 417–421.

    Article  Google Scholar 

  29. Molinari, G. P., Giaffreda, G., Clementi, D., Cabbanè, G., Galmarini, V., & Capelli, R. M. (2020). Surgical treatment of peri-prosthetic femur fractures with dedicated NCB plates: our experience. Acta Bio-Medica: Atenei Parmensis., 91, 297–304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HW, J-YK, S-HB, WH, J-WY, and S-YK. The first draft of the manuscript was written by HW, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shin-Yoon Kim.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standard statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent

Informed consent for study inclusion was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 44 kb)

Supplementary file2 (JPG 69 kb)

Supplementary file3 (JPG 2136 kb)

Supplementary file4 (JPG 2016 kb)

Supplementary file5 (JPG 1086 kb)

Supplementary file6 (JPG 1074 kb)

Supplementary file7 (JPG 1867 kb)

Supplementary file8 (JPG 1397 kb)

Supplementary file9 (JPG 936 kb)

Supplementary file10 (JPG 1180 kb)

Supplementary file11 (JPG 83 kb)

Supplementary file12 (JPG 58 kb)

Supplementary file13 (JPG 42 kb)

Supplementary file14 (JPG 39 kb)

Supplementary file15 (JPG 1987 kb)

Supplementary file16 (JPG 962 kb)

Supplementary file17 (JPG 66 kb)

Supplementary file18 (JPG 945 kb)

Supplementary file19 (JPG 1174 kb)

Supplementary file20 (JPG 928 kb)

Supplementary file21 (JPG 1374 kb)

Supplementary file22 (JPG 1204 kb)

Supplementary file23 (JPG 42 kb)

Supplementary file24 (JPG 30 kb)

Supplementary file25 (JPG 1208 kb)

Supplementary file26 (JPG 33 kb)

Supplementary file27 (JPG 2516 kb)

Supplementary file28 (JPG 1159 kb)

Supplementary file29 (JPG 2294 kb)

Supplementary file30 (JPG 2213 kb)

Supplementary file31 (JPG 1218 kb)

Supplementary file32 (JPG 1140 kb)

Supplementary file33 (JPG 1604 kb)

Supplementary file34 (JPG 1579 kb)

Supplementary file35 (JPG 54 kb)

Supplementary file36 (JPG 975 kb)

Supplementary file37 (JPG 1106 kb)

Supplementary file38 (JPG 988 kb)

Supplementary file39 (JPG 1266 kb)

Supplementary file40 (JPG 1106 kb)

Supplementary file41 (JPG 3182 kb)

Supplementary file42 (JPG 2614 kb)

Supplementary file43 (JPG 3282 kb)

Supplementary file44 (JPG 2182 kb)

Supplementary file45 (JPG 2806 kb)

Supplementary file46 (JPG 2680 kb)

Supplementary file47 (JPG 1152 kb)

Supplementary file48 (JPG 1200 kb)

Supplementary file49 (JPG 49 kb)

Supplementary file50 (JPG 49 kb)

Supplementary file51 (JPG 186 kb)

Supplementary file52 (JPG 765 kb)

Supplementary file53 (JPG 1425 kb)

Supplementary file54 (JPG 1139 kb)

Supplementary file55 (JPG 801 kb)

Supplementary file56 (JPG 1256 kb)

Supplementary file57 (JPG 2353 kb)

Supplementary file58 (JPG 2974 kb)

Supplementary file59 (JPG 1261 kb)

Supplementary file60 (JPG 1062 kb)

Supplementary file61 (JPG 860 kb)

Supplementary file62 (JPG 849 kb)

Supplementary file63 (JPG 1990 kb)

Supplementary file64 (JPG 1877 kb)

Supplementary file65 (JPG 1635 kb)

Supplementary file66 (JPG 1874 kb)

Supplementary file67 (JPG 123 kb)

Supplementary file68 (JPG 1395 kb)

Supplementary file69 (DB 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, H., Kim, JY., Baek, SH. et al. Feasibility of the Inner-Side-Out Use of the LC-DCP for Periprosthetic Femoral Fracture in Total Hip Arthroplasty. JOIO 54, 879–884 (2020). https://doi.org/10.1007/s43465-020-00200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-020-00200-9

Keywords

Navigation