Skip to main content
Log in

Adjustable Loop Femoral Cortical Suspension Devices for Anterior Cruciate Ligament Reconstruction: A Systematic Review

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Anterior cruciate ligament (ACL) injury is a common sports injury. Symptomatic knee instability after this injury is usually treated operatively through ACL reconstruction. The surgery involves a tendon graft being fixed in bony tunnels drilled through femur and tibia. The fixation of the graft is of critical importance to achieving good results. One of the commonest devices used to fix the graft in the femoral bony tunnel is a fixed loop cortical suspensory device. More recently, adjustable loop cortical suspension devices have been introduced, and have gained popularity for ACL reconstruction. These allow for adjusting the length of the suspension loop after insertion. There is currently much debate concerning whether the adjustable loop devices are superior or inferior to the fixed loop devices.

Purpose

To critique and review the current biomechanical and clinical evidence on the use of adjustable loop devices in hamstring ACL reconstruction. To our knowledge, there have been no previous reviews of this topic.

Study Design

Systematic review.

Methods

This systematic review was conducted in accordance with PRISMA. Five databases were searched using multiple search terms and MeSH terms where possible. The following limits were applied: papers published in English and papers published in the last 21 years.

Results

Eleven laboratory and six clinical studies were reviewed. The laboratory-based studies have frequently shown elongation of adjustable loop devices to more than 3 mm under loading protocols, whereas the clinical studies have not shown any significant differences between the patients with fixed loop and the ones with adjustable loop devices.

Clinical Significance

This review shows a discrepancy between laboratory-based and clinical studies. The review of clinical studies in our paper would give future researchers confidence and act as a prompt to construct randomised clinical trials to investigate these devices further.

Conclusion

We feel that more robust clinical randomised studies and trials are needed to evaluate these new devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Boden, B. P., Dean, G. S., Feagin, J. A., Jr., & Garrett, W. E. (2000). Mechanisms of anterior cruciate ligament injury. Orthopedics,23, 573–578.

    CAS  PubMed  Google Scholar 

  2. Fu, F. H., Bennett, C. H., Lattermann, C., & Ma, C. B. (1999). Current trends in anterior cruciate ligament reconstruction. Part 1: Biology and biomechanics of reconstruction. American Journal of Sports Medicine,27, 821–830.

    CAS  PubMed  Google Scholar 

  3. Fu, F. H., Bennett, C. H., Ma, C. B., Menetrey, J., & Lattermann, C. (2000). Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations. American Journal of Sports Medicine,28, 124–130.

    CAS  PubMed  Google Scholar 

  4. Kamien, P. M., Hydrick, J. M., Replogle, W. H., Go, L. T., & Barrett, G. R. (2013). Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. American Journal of Sports Medicine,41, 1808–1812.

    PubMed  Google Scholar 

  5. Heijne, A., Fleming, B. C., Renstrom, P. A., Peura, G. D., Beynnon, B. D., & Werner, S. (2004). Strain on the anterior cruciate ligament during closed kinetic chain exercises. Medicine and Science in Sports and Exercise,36, 935–941.

    PubMed  Google Scholar 

  6. Kawakami, H., Shino, K., Hamada, M., Nakata, K., Nakagawa, S., Nakamura, N., et al. (2004). Graft healing in a bone tunnel: Bone-attached graft with screw fixation versus bone-free graft with extra-articular suture fixation. Knee Surgery, Sports Traumatology, Arthroscopy,12, 384–390.

    PubMed  Google Scholar 

  7. Tomita, F., Yasuda, K., Mikami, S., Sakai, T., Yamazaki, S., & Tohyama, H. (2001). Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy,17, 461–476.

    CAS  PubMed  Google Scholar 

  8. Weiler, A., Peine, R., Pashmineh-Azar, A., Abel, C., Sudkamp, N. P., & Hoffmann, R. F. (2002). Tendon healing in a bone tunnel. Part I: Biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy,18, 113–123.

    PubMed  Google Scholar 

  9. Kvist, J., & Gillquist, J. (2001). Sagittal plane knee translation and electromyographic activity during closed and open kinetic chain exercises in anterior cruciate ligament-deficient patients and control subjects. American Journal of Sports Medicine,29, 72–82.

    CAS  PubMed  Google Scholar 

  10. Morrison, J. B. (1969). Function of the knee joint in various activities. BioMedical Engineering,4, 573–580.

    CAS  PubMed  Google Scholar 

  11. Nagura, T., Matsumoto, H., Kiriyama, Y., Chaudhari, A., & Andriacchi, T. P. (2006). Tibiofemoral joint contact force in deep knee flexion and its consideration in knee osteoarthritis and joint replacement. Journal of Applied Biomechanics,22, 305–313.

    PubMed  Google Scholar 

  12. Noyes, F. R., Butler, D. L., Grood, E. S., Zernicke, R. F., & Hefzy, M. S. (1984). Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. Journal of Bone and Joint Surgery. American Volume,66, 344–352.

    CAS  Google Scholar 

  13. Pflum, M. A., Shelburne, K. B., Torry, M. R., Decker, M. J., & Pandy, M. G. (2004). Model prediction of anterior cruciate ligament force during drop-landings. Medicine and Science in Sports and Exercise,36, 1949–1958.

    PubMed  Google Scholar 

  14. Shelburne, K. B., Pandy, M. G., Anderson, F. C., & Torry, M. R. (2004). Pattern of anterior cruciate ligament force in normal walking. Journal of Biomechanics,37, 797–805.

    PubMed  Google Scholar 

  15. Toutoungi, D. E., Lu, T. W., Leardini, A., Catani, F., & O’Connor, J. J. (2000). Cruciate ligament forces in the human knee during rehabilitation exercises. Clinical Biomechanics (Bristol, Avon),15, 176–187.

    CAS  Google Scholar 

  16. Shelburne, K. B., Torry, M. R., & Pandy, M. G. (2005). Muscle, ligament, and joint-contact forces at the knee during walking. Medicine and Science in Sports and Exercise,37, 1948–1956.

    PubMed  Google Scholar 

  17. Brown, C. H., Jr., Wilson, D. R., Hecker, A. T., & Ferragamo, M. (2004). Graft-bone motion and tensile properties of hamstring and patellar tendon anterior cruciate ligament femoral graft fixation under cyclic loading. Arthroscopy,20, 922–935.

    PubMed  Google Scholar 

  18. Stadelmaier, D. M., Lowe, W. R., Ilahi, O. A., Noble, P. C., Kohl, H. W., & 3RD. (1999). Cyclic pull-out strength of hamstring tendon graft fixation with soft tissue interference screws. Influence of screw length. American Journal of Sports Medicine,27, 778–783.

    CAS  PubMed  Google Scholar 

  19. Cummings, J. F., & Grood, E. S. (2002). The progression of anterior translation after anterior cruciate ligament reconstruction in a caprine model. Journal of Orthopaedic Research,20, 1003–1008.

    CAS  PubMed  Google Scholar 

  20. Hamner, D. L., Brown, C. H., Jr., Steiner, M. E., Hecker, A. T., & Hayes, W. C. (1999). Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: Biomechanical evaluation of the use of multiple strands and tensioning techniques. Journal of Bone and Joint Surgery. American Volume,81, 549–557.

    CAS  Google Scholar 

  21. Magnussen, R. A., Lawrence, J. T., West, R. L., Toth, A. P., Taylor, D. C., & Garrett, W. E. (2012). Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy,28, 526–531.

    PubMed  Google Scholar 

  22. Legnani, C., Ventura, A., Terzaghi, C., Borgo, E., & Albisetti, W. (2010). Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature. International Orthopaedics,34, 465–471.

    PubMed  PubMed Central  Google Scholar 

  23. Ahmad, C. S., Gardner, T. R., Groh, M., Arnouk, J., & Levine, W. N. (2004). Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. American Journal of Sports Medicine,32, 635–640.

    PubMed  Google Scholar 

  24. Kamelger, F. S., Onder, U., Schmoelz, W., Tecklenburg, K., Arora, R., & Fink, C. (2009). Suspensory fixation of grafts in anterior cruciate ligament reconstruction: A biomechanical comparison of 3 implants. Arthroscopy,25, 767–776.

    PubMed  Google Scholar 

  25. Kousa, P., Jarvinen, T. L., Vihavainen, M., Kannus, P., & Jarvinen, M. (2003). The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: Tibial site. American Journal of Sports Medicine,31, 182–188.

    PubMed  Google Scholar 

  26. Milano, G., Mulas, P. D., Ziranu, F., Deriu, L., & Fabbriciani, C. (2007). Comparison of femoral fixation methods for anterior cruciate ligament reconstruction with patellar tendon graft: A mechanical analysis in porcine knees. Knee Surgery, Sports Traumatology, Arthroscopy,15, 733–738.

    PubMed  Google Scholar 

  27. Uchio, Y., Ochi, M., Sumen, Y., Adachi, N., Kawasaki, K., Iwasa, J., et al. (2002). Mechanical properties of newly developed loop ligament for connection between the EndoButton and hamstring tendons: Comparison with Ethibond sutures and Endobutton tape. Journal of Biomedical Materials Research,63, 173–181.

    CAS  PubMed  Google Scholar 

  28. Lubowitz, J. H., Ahmad, C. S., & Anderson, K. (2011). All-inside anterior cruciate ligament graft-link technique: Second-generation, no-incision anterior cruciate ligament reconstruction. Arthroscopy,27, 717–727.

    PubMed  Google Scholar 

  29. Conner, C. S., Perez, B. A., Morris, R. P., Buckner, J. W., Buford, W. L., Jr., & Ivey, F. M. (2010). Three femoral fixation devices for anterior cruciate ligament reconstruction: Comparison of fixation on the lateral cortex versus the anterior cortex. Arthroscopy,26, 796–807.

    PubMed  Google Scholar 

  30. Petre, B. M., Smith, S. D., Jansson, K. S., de Meijer, P. P., Hackett, T. R., Laprade, R. F., et al. (2013). Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: A comparative biomechanical study. American Journal of Sports Medicine,41, 416–422.

    PubMed  Google Scholar 

  31. Barrow, A. E., Pilia, M., Guda, T., Kadrmas, W. R., & Burns, T. C. (2014). Femoral suspension devices for anterior cruciate ligament reconstruction: Do adjustable loops lengthen? American Journal of Sports Medicine,42, 343–349.

    PubMed  Google Scholar 

  32. Firat, A., Catma, F., Tunc, B., Hacihafizoglu, C., Altay, M., Bozkurt, M., et al. (2014). The attic of the femoral tunnel in anterior cruciate ligament reconstruction: A comparison of outcomes of two suspensory femoral fixation systems. Knee Surgery, Sports Traumatology, Arthroscopy,22, 1097–1105.

    PubMed  Google Scholar 

  33. Eguchi, A., Ochi, M., Adachi, N., Deie, M., Nakamae, A., & Usman, M. A. (2014). Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: Comparison of the fixed-length loop device versus the adjustable-length loop device. Knee,21, 743–748.

    PubMed  Google Scholar 

  34. Pasquali, M., Plante, M. J., Monchik, K. O., & Spenciner, D. B. (2017). A comparison of three adjustable cortical button ACL fixation devices. Knee Surgery, Sports Traumatology, Arthroscopy,25, 1613–1616.

    PubMed  Google Scholar 

  35. Boyle, M. J., Vovos, T. J., Walker, C. G., Stabile, K. J., Roth, J. M., & Garrett, W. E., Jr. (2015). Does adjustable-loop femoral cortical suspension loosen after anterior cruciate ligament reconstruction? A retrospective comparative study. Knee,22, 304–308.

    PubMed  Google Scholar 

  36. Johnson, J. S., Smith, S. D., Laprade, C. M., Turnbull, T. L., Laprade, R. F., & Wijdicks, C. A. (2015). A biomechanical comparison of femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction under high loads. American Journal of Sports Medicine,43, 154–160.

    PubMed  Google Scholar 

  37. Noonan, B. C., Dines, J. S., Allen, A. A., Altchek, D. W., & Bedi, A. (2016). Biomechanical evaluation of an adjustable loop suspensory anterior cruciate ligament reconstruction fixation device: The value of retensioning and knot tying. Arthroscopy,32, 2050–2059.

    PubMed  Google Scholar 

  38. Lanzetti, R. M., Monaco, E., de Carli, A., Grasso, A., Ciompi, A., Sigillo, R., et al. (2016). Can an adjustable-loop length suspensory fixation device reduce femoral tunnel enlargement in anterior cruciate ligament reconstruction? A prospective computer tomography study. The Knee,23, 837–841.

    CAS  PubMed  Google Scholar 

  39. Basson, B., Philippot, R., Neri, T., Meucci, J. F., Boyer, B., & Farizon, F. (2016). The effect of femoral tunnel widening on one-year clinical outcome after anterior cruciate ligament reconstruction using ZipLoop(R) technology for fixation in the cortical bone of the femur. The Knee,23, 233–236.

    PubMed  Google Scholar 

  40. Born, T. R., Biercevicz, A. M., Koruprolu, S. C., Paller, D., Spenciner, D., & Fadale, P. D. (2016). Biomechanical and computed tomography analysis of adjustable femoral cortical fixation devices for anterior cruciate ligament reconstruction in a cadaveric human knee model. Arthroscopy,32, 253–261.

    PubMed  Google Scholar 

  41. Choi, N. H., Yang, B. S., & Victoroff, B. N. (2017). Clinical and radiological outcomes after hamstring anterior cruciate ligament reconstructions: Comparison between fixed-loop and adjustable-loop cortical suspension devices. American Journal of Sports Medicine,45, 826–831.

    PubMed  Google Scholar 

  42. Wise, B. T., Patel, N. N., Wier, G., & Labib, S. A. (2017). Outcomes of ACL reconstruction with fixed versus variable loop button fixation. Orthopedics,40, e275–e280.

    PubMed  Google Scholar 

  43. Ahmad, S. S., Hirschmann, M. T., Voumard, B., Kohl, S., Zysset, P., Mukabeta, T., et al. (2018). Adjustable loop ACL suspension devices demonstrate less reliability in terms of reproducibility and irreversible displacement. Knee Surgery, Sports Traumatology, Arthroscopy,26, 1392–1398.

    PubMed  Google Scholar 

  44. Cheng, J., Paluvadi, S. V., Lee, S., Yoo, S., Song, E. K., & Seong, J. K. (2018). Biomechanical comparisons of current suspensory fixation devices for anterior cruciate ligament reconstruction. International Orthopaedics. https://doi.org/10.1007/s00264-018-3780-7.

    Article  PubMed  Google Scholar 

  45. Chang, M. J., Bae, T. S., Moon, Y. W., Ahn, J. H., & Wang, J. H. (2018). A comparative biomechanical study of femoral cortical suspension devices for soft-tissue anterior cruciate ligament reconstruction: Adjustable-length loop versus fixed-length loop. Arthroscopy,34, 566–572.

    PubMed  Google Scholar 

  46. Arnold, M. P., Verdonschot, N., & van Kampen, A. (2005). ACL graft can replicate the normal ligament’s tension curve. Knee Surgery, Sports Traumatology, Arthroscopy,13, 625–631.

    PubMed  Google Scholar 

  47. Wascher, D. C., Markolf, K. L., Shapiro, M. S., & Finerman, G. A. (1993). Direct in vitro measurement of forces in the cruciate ligaments. Part I: The effect of multiplane loading in the intact knee. Journal of Bone and Joint Surgery. American Volume,75, 377–386.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Miss. Aalya Al-Assaf for her invaluable suggestions to improve the structure of the manuscript; and Mrs. Mary Smith, Miss. Ruth Compton, and Mrs. Cate Newell, the library staff at the Royal Devon and Exeter Hospital for sourcing the full text articles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalin Shaunak.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Shaunak, S., Shaw, S.C.K. et al. Adjustable Loop Femoral Cortical Suspension Devices for Anterior Cruciate Ligament Reconstruction: A Systematic Review. JOIO 54, 426–443 (2020). https://doi.org/10.1007/s43465-019-00022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-019-00022-4

Keywords

Navigation