Skip to main content
Log in

Reinforcements in 3D printing concrete structures

  • Review Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

3D printing of concrete structures has had a strong development in recent years, enhanced by the advantages it presents over traditional construction. However, it currently still has some limitations. One of those limitations is to incorporate the reinforcements into the automated 3D printing process. The objective of this work is to present a review of the methods that have been used so far to reinforce the structures. The different methods used will be presented focusing on the reinforcement by the use of fibers. The properties of the fibers, lengths, and percentages of the same used in the mixtures will be analyzed. The results of the different tests will be shown making a comparison between the values obtained from the tests carried out with the printed and molded materials. Finally, the increases in the results of the tests that these fibers provide with respect to the samples without them will be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Lowke D, Dini E, Perrot A, Weger D, Gehlen C, Dillenburger B. Particle-bed 3D printing in concrete construction–possibilities and challenges. Cem Concr Res. 2018;112:50–65. https://doi.org/10.1016/j.cemconres.2018.05.018.

    Article  CAS  Google Scholar 

  2. Cesaretti G, Dini E, de Kestelier X, Colla V, Pambaguian L. Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronaut. 2014;93:430–50. https://doi.org/10.1016/j.actaastro.2013.07.034.

    Article  ADS  Google Scholar 

  3. Khoshnevis B, “Automated construction by contour crafting-related robotics and information technologies”. [Online]. 2004. Available from: www.calearth.org

  4. Panda B, Singh GB, Unluer C, Tan MJ. Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. J Clean Prod. 2019;220:610–9. https://doi.org/10.1016/j.jclepro.2019.02.185.

    Article  CAS  Google Scholar 

  5. Al Rashid A, Khan SA, Al-Ghamdi SG, Koç M. Additive manufacturing: technology, applications, markets, and opportunities for the built environment. Autom Constr. 2020. https://doi.org/10.1016/j.autcon.2020.103268.

    Article  Google Scholar 

  6. Hwang D, Khoshnevis B, and Epstein DJ, “Concrete wall fabrication by contour crafting”. [Online]. 2004. Available from: www.contourcrafting.org.

  7. Zhang J, Khoshnevis B. Contour crafting process plan optimization part I: single-nozzle case. Int J Ind Syst Eng. 2010;4(1):33–46.

    Google Scholar 

  8. Khoshnevis B, et al. Mega-scale fabrication by contour crafting. Int J Ind Syst Eng. 2006;1(3):301–20.

    Google Scholar 

  9. Lim, S., Buswell, R., Le, T., Wackrow, R., Austin, S., Gibb, A., & Thorpe, T. Development of a viable concrete printing process. Proceedings of the 28th International Symposium on Automation and Robotics in Construction, ISARC 2011, 665–670. https://doi.org/10.22260/isarc2011/0124

  10. El-Sayegh S, Romdhane L, Manjikian S. A critical review of 3D printing in construction: benefits, challenges, and risks. Arch Civ Mech Eng. 2020;20(2):1–25. https://doi.org/10.1007/s43452-020-00038-w.

    Article  Google Scholar 

  11. Zhang J, Wang J, Dong S, Yu X, Han B. A review of the current progress and application of 3D printed concrete. Compos Part A Appl Sci Manuf. 2019. https://doi.org/10.1016/j.compositesa.2019.105533.

    Article  Google Scholar 

  12. de Schutter G, Lesage K, Mechtcherine V, Nerella VN, Habert G, Agusti-Juan I. Vision of 3D printing with concrete—technical, economic and environmental potentials. Cem Concr Res. 2018;112:25–36. https://doi.org/10.1016/j.cemconres.2018.06.001.

    Article  CAS  Google Scholar 

  13. Ma GW, Wang L, Ju Y. State-of-the-art of 3D printing technology of cementitious material—An emerging technique for construction. Sci China Technol Sci. 2018;61(4):475–95. https://doi.org/10.1007/s11431-016-9077-7.

    Article  ADS  Google Scholar 

  14. Bong SH, Nematollahi B, Nazari A, Xia M, Sanjayan J. Method of optimisation for ambient temperature cured sustainable geopolymers for 3D printing construction applications. Materials. 2019. https://doi.org/10.3390/ma12060902.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Panda B, Paul SC, Mohamed NAN, Tay YWD, Tan MJ. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement (Lond). 2018;113:108–16. https://doi.org/10.1016/j.measurement.2017.08.051.

    Article  ADS  Google Scholar 

  16. Tay YWD, Ting GHA, Qian Y, Panda B, He L, Tan MJ. Time gap effect on bond strength of 3D-printed concrete. Virtual Phys Prototyp. 2019;14(1):104–13. https://doi.org/10.1080/17452759.2018.1500420.

    Article  Google Scholar 

  17. ApisCor. Available from: https://www.apis-cor.com/as-masonry. Accessed 12 Jan 2020.

  18. Lim S, Buswell RA, Le TT, Austin SA, Gibb AGF, Thorpe T. Developments in construction-scale additive manufacturing processes. Autom Constr. 2012;21(1):262–8. https://doi.org/10.1016/j.autcon.2011.06.010.

    Article  Google Scholar 

  19. Salet TAM, Ahmed ZY, Bos FP, Laagland HLM. Design of a 3D printed concrete bridge by testing*. Virtual Phys Prototyp. 2018;13(3):222–36. https://doi.org/10.1080/17452759.2018.1476064.

    Article  Google Scholar 

  20. Salet TAM, Ahmed ZY, Bos FP, Laagland HLM. 3D printed concrete bridge. In: Proceedings of the international conference on progress in additive manufacturing. 2018. p. 2–9. doi: https://doi.org/10.25341/D4530C.

  21. Asprone D, Auricchio F, Menna C, Mercuri V. 3D printing of reinforced concrete elements: Technology and design approach. Constr Build Mater. 2018;165:218–31. https://doi.org/10.1016/j.conbuildmat.2018.01.018.

    Article  Google Scholar 

  22. NC TV. World’s first 3D-printed house that can withstand 8.0-magnitude quake available online: https://www.youtube.com/watch?v=OloOc21_u80. Accessed 12 Jan 2020.

  23. Bos FP, Ahmed ZY, Jutinov ER, Salet TAM. Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials. 2017. https://doi.org/10.3390/ma10111314.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lim JH, Panda B, Pham QC. Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement. Constr Build Mater. 2018;178:32–41. https://doi.org/10.1016/j.conbuildmat.2018.05.010.

    Article  CAS  Google Scholar 

  25. Li Z, Wang L, Ma G. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions. Compos B Eng. 2020. https://doi.org/10.1016/j.compositesb.2020.107796.

    Article  Google Scholar 

  26. Mechtcherine V, Michel A, Liebscher M, Schmeier T. Extrusion-based additive manufacturing with carbon reinforced concrete: concept and feasibility study. Materials. 2020. https://doi.org/10.3390/ma13112568.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marchment T, Sanjayan J. Mesh reinforcing method for 3D Concrete Printing. Autom Constr. 2020. https://doi.org/10.1016/j.autcon.2019.102992.

    Article  Google Scholar 

  28. Inozemtcev A, Duong TQ. Technical and economic efficiency of materials using 3D-printing in construction on the example of high-strength lightweight fiber-reinforced concrete. In: E3S web of conferences, vol. 97. 2019. Les Ulis: EDP Sciences; doi: https://doi.org/10.1051/e3sconf/20199702010.

  29. Kreiger EL, Kreiger MA, Case MP. Development of the construction processes for reinforced additively constructed concrete. Addit Manuf. 2019;28:39–49. https://doi.org/10.1016/j.addma.2019.02.015.

    Article  Google Scholar 

  30. García de Soto B, et al. Productivity of digital fabrication in construction: cost and time analysis of a robotically built wall. Autom Constr. 2018;92:297–311. https://doi.org/10.1016/j.autcon.2018.04.004.

    Article  Google Scholar 

  31. Nerella VN, Krause M, Mechtcherine V. Direct printing test for buildability of 3D-printable concrete considering economic viability. Autom Constr. 2020. https://doi.org/10.1016/j.autcon.2019.102986.

    Article  Google Scholar 

  32. Otto J, Kortmann J, Krause M “Cost calculation of concrete 3D printing [Wirtschaftliche Perspektiven von Beton-3D-Druckverfahren],” Beton- und Stahlbetonbau, vol. 115, no. 8, pp. 586–597, 2020, doi: https://doi.org/10.1002/best.201900087

  33. Han Y, Yang Z, Ding T, Xiao J. Environmental and economic assessment on 3D printed buildings with recycled concrete. J Clean Prod. 2021. https://doi.org/10.1016/j.jclepro.2020.123884.

    Article  Google Scholar 

  34. Abdalla H, Fattah KP, Abdallah M, Tamimi AK. Environmental footprint and economics of a full-scale 3d-printed house. Sustainability (Switzerland). 2021. https://doi.org/10.3390/su132111978.

    Article  Google Scholar 

  35. Weng Y, et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. J Clean Prod. 2020. https://doi.org/10.1016/j.jclepro.2020.121245.

    Article  Google Scholar 

  36. Yoris-Nobile AI, et al. Life cycle assessment (LCA) and multi-criteria decision-making (MCDM) analysis to determine the performance of 3D printed cement mortars and geopolymers. J Sustain Cem Based Mater. 2022. https://doi.org/10.1080/21650373.2022.2099479.

    Article  Google Scholar 

  37. Zhang D, Yu J, Wu H, Jaworska B, Ellis BR, Li VC. Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC). Compos B Eng. 2020. https://doi.org/10.1016/j.compositesb.2020.107741.

    Article  Google Scholar 

  38. Amran M, et al. Fibre-reinforced foamed concretes: a review. Materials. 2020. https://doi.org/10.3390/ma13194323.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Slebi-Acevedo CJ, Lastra-González P, Pascual-Muñoz P, Castro-Fresno D. Mechanical performance of fibers in hot mix asphalt: a review. Constr Build Mater. 2019;200:756–69. https://doi.org/10.1016/j.conbuildmat.2018.12.171.

    Article  Google Scholar 

  40. Le TT, Austin SA, Lim S, Buswell RA, Gibb AGF, Thorpe T. Mix design and fresh properties for high-performance printing concrete. Mater Struct. 2012;45(8):1221–32. https://doi.org/10.1617/s11527-012-9828-z.

    Article  CAS  Google Scholar 

  41. Soltan DG, Li VC. A self-reinforced cementitious composite for building-scale 3D printing. Cem Concr Compos. 2018;90:1–13. https://doi.org/10.1016/j.cemconcomp.2018.03.017.

    Article  CAS  Google Scholar 

  42. Papachristoforou M, Mitsopoulos V, Stefanidou M. Evaluation of workability parameters in 3D printing concrete. Procedia Struct Integr. 2018;10:155–62. https://doi.org/10.1016/j.prostr.2018.09.023.

    Article  Google Scholar 

  43. UNE-EN_196–1. Methods of testing cement - Part 1: determination of strength. AENOR - Asociación Española de Normalización y Certificación, 2018.

  44. Nematollahi B, et al. Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction. Materials. 2018. https://doi.org/10.3390/ma11122352.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nematollahi B, Xia M, Sanjayan J, Vijay P. Effect of type of fiber on inter-layer bond and flexural strengths of extrusion-based 3D printed geopolymer. Mater Sci Forum. 2018;939:155–62. https://doi.org/10.4028/www.scientific.net/MSF.939.155.

    Article  Google Scholar 

  46. Al-Qutaifi S, Nazari A, Bagheri A. Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing. Constr Build Mater. 2018;176:690–9. https://doi.org/10.1016/j.conbuildmat.2018.04.195.

    Article  CAS  Google Scholar 

  47. Ramezanianpour AA, Esmaeili M, Ghahari SA, Najafi MH. Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Constr Build Mater. 2013;44:411–8. https://doi.org/10.1016/j.conbuildmat.2013.02.076.

    Article  Google Scholar 

  48. Yan C, Banthia N. Shrinkage cracking in polyolefin fiber-reinforced concrete. Mater J. 2000;97(4):432–7.

    Google Scholar 

  49. Zhu B, Pan J, Nematollahi B, Zhou Z, Zhang Y, Sanjayan J. Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Mater Des. 2019. https://doi.org/10.1016/j.matdes.2019.108088.

    Article  Google Scholar 

  50. Jo JH, Jo BW, Cho W, Kim JH. Development of a 3D printer for concrete structures: laboratory testing of cementitious materials. Int J Concr Struct Mater. 2020. https://doi.org/10.1186/s40069-019-0388-2.

    Article  Google Scholar 

  51. J Yu, CKY Leung “Impact of 3D printing direction on mechanical performance of strain-hardening cementitious composite (SHCC).” RILEM Bookseries, vol 19. Cham: Springer; 2019. pp. 255–265.

  52. Jamshaid H, Mishra R. A green material from rock: basalt fiber–a review. J Text Inst. 2016;107(7):923–37. https://doi.org/10.1080/00405000.2015.1071940.

    Article  CAS  Google Scholar 

  53. Hambach M, Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. Cem Concr Compos. 2017;79:62–70.

    Article  CAS  Google Scholar 

  54. Ma G, Li Z, Wang L, Wang F, Sanjayan J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Constr Build Mater. 2019;202:770–83. https://doi.org/10.1016/j.conbuildmat.2019.01.008.

    Article  Google Scholar 

  55. Bhatnagar A, Tam T. High-performance ballistic fibers and tapes. 2016. https://doi.org/10.1016/B978-0-08-100406-7.00001-5.

    Article  Google Scholar 

  56. Tam T, Bhatnagar A. High-performance ballistic fibers and tapes. In: Lightweight ballistic composites. 2016. doi:https://doi.org/10.1016/B978-0-08-100406-7.00001-5.

  57. Panda B, Chandra Paul S, Jen Tan M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett. 2017;209:146–9. https://doi.org/10.1016/j.matlet.2017.07.123.

    Article  CAS  Google Scholar 

  58. Korniejenko K, et al. Mechanical properties of short fiber-reinforced geopolymers made by casted and 3D printing methods: A comparative study. Materials. 2020. https://doi.org/10.3390/ma13030579.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hambach M, Möller H, Neumann T. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexyral strength. Cem Concr Res. 2016;89:80–6.

    Article  CAS  Google Scholar 

  60. Arunothayan AR, Nematollahi B, Ranade R, Bong SH, Sanjayan J. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.119546.

    Article  Google Scholar 

  61. Pham L, Tran P, Sanjayan J. Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.118785.

    Article  Google Scholar 

Download references

Acknowledgements

The work has received funding through the grant “Promotion of activity in R+D of the GITECO and GCS groups of the University of Cantabria”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Castro-Fresno.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors state that the research was conducted according to ethical standards.

Research involving human participants and/or animals

The authors declare that they have no involved Human Participants and/or Animals in the work reported in this paper.

Informed consent

The authors declare that they have no involved Human Participants and/or Animals in the work reported in this paper. Therefore, informed consent is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Canon, S., Blanco-Fernandez, E., Castro-Fresno, D. et al. Reinforcements in 3D printing concrete structures. Archiv.Civ.Mech.Eng 23, 25 (2023). https://doi.org/10.1007/s43452-022-00552-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00552-z

Keywords

Navigation