Skip to main content
Log in

Influence of heat-treated Cu–Be electrode on machining accuracy in ECMM with Monel 400 alloy

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Monel 400 is a nickel–copper alloy utilized in marine and oil refining industries owing to its high corrosion resistance and fire withstanding property. The machining of such higher strength material with complex shapes is possible with electrochemical micromachining (ECMM) process, since it can machine with less wear, better precision, micro-level hole profiles, no heat-affected zone and no thermal stresses. The present study was performed with machining of Monel 400 alloy in ECMM process with copper–beryllium wire electrode under various heat treatments, such as annealing, quenching and normalizing. The lower overcut can be obtained using quenched tool electrode when compared to the other treated tools and untreated tool electrode owing to its fine grain structure which restricts the flow of electrons to side of the tool. The conicity with normalized tool electrode is lower, since it exhibits high electrical conductivity by decreasing the distraction of electrons. Circularity with quenched tool electrode is lower due to its fine grain structure and higher electrical conductivity, since its localization effect increases causing uniform stray current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Zhang A, Xu Z, Lu J, Wang Y. Improvement of blade platform accuracy in ECM utilizing an auxiliary electrode. Mater Manuf Process. 2020;35:951–60. https://doi.org/10.1080/10426914.2020.1752920.

    Article  CAS  Google Scholar 

  2. Geethapriyan T, Kalaichelvan K, Muthuramalingam T. Multi performance optimization of electrochemical micro-machining process surface related parameters on machining Inconel 718 using Taguchi-grey relational analysis. Metall. Ital. 2016,4: 13–19. http://www.aimnet.it/la_metallurgia_italiana/2016/aprile/Muthuramalingam.pdf. Accessed 30 Apr 2022.

  3. Zhao Z, Ma Z, Liu Y, Wu X, Guo H. Optimization and affections of cathode feed angle on machining accuracy error distribution of aero-engine blade in electrochemical machining. Key Eng Mater. 2018;764:225–34. https://doi.org/10.4028/www.scientific.net/KEM.764.225.

    Article  Google Scholar 

  4. Geethapriyan T, Muthuramalingam T, Moiduddin K, Mian SH, Alkhalefah H, Umer U. Performance analysis of electrochemical micro machining of titanium (Ti-6Al-4V) alloy under different electrolytes concentrations. Metals. 2021;11:247. https://doi.org/10.3390/met11020247.

    Article  CAS  Google Scholar 

  5. Liu Y, Li M, Niu J, Lu S, Jiang Y. Fabrication of taper free micro-holes utilising a combined rotating helical electrode and short voltage pulse by ECM. Micromachines. 2019;10(1):28. https://doi.org/10.3390/mi10010028.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang H, Liu S, Yue W, Xiao H, Zhang P. Experimental study of surface characteristic in electrochemical machining of 35CrMo steel. Metals. 2018;8(7):509. https://doi.org/10.3390/met8070509.

    Article  CAS  Google Scholar 

  7. Liu Y, Huang SF. Experimental study on electrochemical drilling of micro holes with high aspect ratio. Adv Mater Res. 2014;941–944:1952–5. https://doi.org/10.4028/www.scientific.net/AMR.941-944.1952.

    Article  Google Scholar 

  8. Dong S, Wang Z, Wang Y. Research on micro-EDM with an auxiliary electrode to suppress stray-current corrosion on C17200 beryllium copper alloy in deionized water. Int J Adv Manuf Technol. 2017;93:857–67. https://doi.org/10.1007/s00170-017-0478-8.

    Article  Google Scholar 

  9. Geethapriyan T, Kalaichelvan K, Muthuramalingam T, Rajadurai A. Performance analysis of process parameters on machining α–β titanium alloy in electrochemical micromachining process. Proc Inst Mech Eng B J Eng Manuf. 2018;232:1577–89. https://doi.org/10.1177/0954405416673103.

    Article  CAS  Google Scholar 

  10. Wang Y, Chen H, Wang Z, Zhou Z, Shan D. Development of a soft-computer numerical control system for micro-electrochemical machining. Am J Nanotechnol. 2010;1:51–5. https://doi.org/10.3844/ajnsp.2010.51.55.

    Article  ADS  Google Scholar 

  11. Yong L, Di Z, Yongbin Z, Shaofu H, Hongbing Y. Experimental investigation on complex structures machining by electrochemical micromachining technology. Chin J Aeronaut. 2010;23:578–84. https://doi.org/10.1016/S1000-9361(09)60257-0.

    Article  Google Scholar 

  12. Saranya S, Sankar AR. Fabrication of precise microchannels using a side-insulated tool in a spark assisted chemical engraving process. Mater Manuf Process. 2018;33(13):1422–8. https://doi.org/10.1080/10426914.2017.1401728.

    Article  CAS  Google Scholar 

  13. Thanigaivelan R, Arunachalam RM. Experimental study on the influence of tool electrode tip shape on electrochemical micromachining of 304 stainless steel. Mater Manuf Process. 2010;25:1181–5. https://doi.org/10.1080/10426914.2010.508806.

    Article  CAS  Google Scholar 

  14. Millett JCF, Whiteman G, Park NT, Case S, Thomas GA. The effects of heat treatment upon the shock response of a copper-beryllium alloy. Acta Mater. 2019;165:678–85. https://doi.org/10.1016/j.actamat.2013.01.021.

    Article  ADS  CAS  Google Scholar 

  15. Goel H, Pandey PM. Experimental investigations into the ultrasonic assisted jet electrochemical micro-drilling process. Mater Manuf Process. 2017;32(13):1547–56. https://doi.org/10.1080/10426914.2017.1279294.

    Article  CAS  Google Scholar 

  16. Uttarwar SS, Chpde IK. Experimental study of effect of parameter variation on output parameters for electrochemical machining of SS AISI 202.IOSR. J Mech Civ Eng. 2013;5(5): 65–71. https://www.iosrjournals.org/iosr-jmce/papers/vol5-issue5/H0556571.pdf. Accessed 30 Apr 2022.

  17. Krishnan R, Duraisamy S, Palanisamy P, Veeramani A. Optimization of the machining parameters in the electrochemical micro-machining of nickel. Mater Technol. 2018;52:253–8. https://doi.org/10.17222/mit.2017.045.

    Article  CAS  Google Scholar 

  18. Das MK, Kumar K, Barman TK, Sahoo P. Optimization of surface roughness and MRR in electrochemical machining of EN31 tool steel using grey-Taguchi approach. Procedia Manuf Sci. 2014;6:729–40. https://doi.org/10.1016/j.mspro.2014.07.089.

    Article  CAS  Google Scholar 

  19. Saravanan D, Arularasu M, Ganesan K. A study on electrochemical micromachining of super duplex stainless steel for biomedical filters. ARPN J Eng Appl Sci. 2012;7(5):517–23. http://www.arpnjournals.com/jeas/research_papers/rp_2012/jeas_0512_684.pdf. Accessed 30 Apr 2022.

  20. Paul L, Hiremath SS. Response surface modelling of micro holes in electrochemical discharge machining process. Procedia Eng. 2013;64:1395–404. https://doi.org/10.1016/j.proeng.2013.09.221.

    Article  CAS  Google Scholar 

  21. Shanmugam R, Ramoni M, Geethapriyan T, Muthuramalingam T. Influence of additive manufactured stainless steel tool electrode on machinability of beta titanium alloy. Metals. 2021;11:778. https://doi.org/10.3390/met11050778.

    Article  CAS  Google Scholar 

  22. Geethapriyan T, Muthuramalingam T, Kalaichelvan K. Influence of process parameters on machinability of Inconel 718 by electrochemical micromachining process using TOPSIS technique. Arab J Sci Eng. 2019;44:7945–55. https://doi.org/10.1007/s13369-019-03978-5.

    Article  CAS  Google Scholar 

  23. Muthuramalingam T, Vasanth S, Vinothkumar P, Geethapriyan T, Rabik MM. Multi criteria decision making of abrasive flow oriented process parameters in abrasive water jet machining using Taguchi–DEAR methodology. SILICON. 2018;10:2015–21. https://doi.org/10.1007/s12633-017-9715-x.

    Article  CAS  Google Scholar 

  24. Thangaraj M, Akash R, Krishnan S, Phan NH, Pi VN, Elsheikh AH. Surface quality measures analysis and optimization on machining titanium alloy using CO2 based Laser beam drilling process. J Manuf Process. 2021;62:1–6.

    Article  Google Scholar 

  25. Muthuramalingam T, Moiduddin K, Akash R, Krishnan S, Mian SH, Ameen W, Alkhalefah H. Influence of process parameters on dimensional accuracy of machined Titanium (Ti-6Al-4V) alloy in Laser Beam Machining Process. Opt Laser Technol. 2020;132:106494.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

There is no finding involved in this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors are involved in conducting experiments, analysis, data interpretation, finding and manuscript preparation.

Corresponding author

Correspondence to T. Muthuramalingam.

Ethics declarations

Conflicts of interest/Competing interests

There are no conflicts of interest in this study.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Geethapriyan, T., Muthuramalingam, T. et al. Influence of heat-treated Cu–Be electrode on machining accuracy in ECMM with Monel 400 alloy. Archiv.Civ.Mech.Eng 22, 154 (2022). https://doi.org/10.1007/s43452-022-00478-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00478-6

Keywords

Navigation