Skip to main content
Log in

Size-dependent coupled bending–torsional vibration of Timoshenko microbeams

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the coupled bending and torsional vibration analysis of microbeams under axial force based on Timoshenko’s beam theory is investigated. Modified non-classic coupled stress theory and the Hamilton principle used to establish the motion equations of the system. The generalized differential quadratures method is used to solve the obtained set of differential equations. After establishment of eigenvalue problem, two comparison studies are conducted to assure the validity and accuracy of the present solution and excellent agreement observed with the present results and those reported by other researchers in some specific cases by analytical solutions and classical beam theory. Afterwards, parametric studies are developed to examine the influences of boundary conditions, size effect, and various geometric characteristics of the beam on natural frequencies and the associated mode shapes are discussed. The results show that the non-compliance of the mass axis with the elastic axis reduces the natural frequency. Also, Poisson’s ratio have an opposite effect on the natural frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Takawa T, Fukuda T, Takada T. Flexural-torsion coupling vibration control of fiber composite cantilevered beam by using piezoceramic actuators. Smart Mater Struct. 1997;6(4):477.

    Article  ADS  Google Scholar 

  2. Eslimy-Isfahany SHR, Banerjee JR. Use of generalized mass in the interpretation of dynamic response of bending–torsion coupled beams. J Sound Vib. 2000;238(2):295–308.

    Article  ADS  Google Scholar 

  3. Banerjee JR. Coupled bending–torsional dynamic stiffness matrix for beam elements. Int J Numer Meth Eng. 1989;28(6):1283–98.

    Article  Google Scholar 

  4. Banerjee JR, Williams FW. Coupled bending-torsional dynamic stiffness matrix of an axially loaded Timoshenko beam element. Int J Solids Struct. 1994;31(6):749–62.

    Article  Google Scholar 

  5. Banerjee JR, Fisher SA. Coupled bending–torsional dynamic stiffness matrix for axially loaded beam elements. Int J Numer Methods Eng. 1992;33(4):739–51.

    Article  Google Scholar 

  6. Eslimy-Isfahany SHR, Banerjee JR, Sobey AJ. Response of a bending–torsion coupled beam to deterministic and random loads. J Sound Vib. 1996;195(2):267–83.

    Article  ADS  Google Scholar 

  7. Kaya MO, Ozgumus OO. Flexural–torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM. J Sound Vib. 2007;306(3–5):495–506.

    Article  ADS  Google Scholar 

  8. Lee U, Jang I. Spectral element model for axially loaded bending–shear–torsion coupled composite Timoshenko beams. Compos Struct. 2010;92(12):2860–70.

    Article  Google Scholar 

  9. Daneshmehr AR, Nateghi A, Inman DJ. Free vibration analysis of cracked composite beams subjected to coupled bending–torsion loads based on a first order shear deformation theory. Appl Math Model. 2013;37(24):10074–91.

    Article  MathSciNet  Google Scholar 

  10. Sari MES, Al-Kouz WG, Al-Waked R. Bending–torsional-coupled vibrations and buckling characteristics of single and double composite Timoshenko beams. Adv Mech Eng. 2019;11(3):1687814019834452.

    Article  Google Scholar 

  11. Soltani M, Atoufi F, Mohri F, Dimitri R, Tornabene F. Nonlocal analysis of the flexural–torsional stability for FG tapered thin-walled beam-columns. Nanomaterials. 2021;11(8):1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li L, Hu Y. Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci. 2016;107:77–97.

    Article  MathSciNet  Google Scholar 

  13. Lei J, He Y, Zhang B, Gan Z, Zeng P. Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory. Int J Eng Sci. 2013;72:36–52.

    Article  Google Scholar 

  14. Habibi B, Beni YT, Mehralian F. Free vibration of magneto-electro-elastic nanobeams based on modified couple stress theory in thermal environment. Mech Adv Mater Struct. 2019;26(7):601–13.

    Article  Google Scholar 

  15. Alibeigi B, Beni YT, Mehralian F. On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams. Eur Phys J Plus. 2018;133(3):1–18.

    Article  Google Scholar 

  16. Mohtashami M, Beni YT. Size-dependent buckling and vibrations of piezoelectric nanobeam with finite element method. Iran J Sci Technol Trans Civ Eng. 2019;43(3):563–76.

    Article  Google Scholar 

  17. Tadi Beni Z, Hosseini Ravandi SA, Tadi Beni Y. Size-dependent nonlinear forced vibration analysis of viscoelastic/piezoelectric nano-beam. J Appl Comput Mech. 2020;7(4):1878-91.

    Google Scholar 

  18. Civalek Ö, Dastjerdi S, Akbaş ŞD, Akgöz B. Vibration analysis of carbon nanotube-reinforced composite microbeams. Math Methods Appl Sci. 2021. https://doi.org/10.1002/mma.7069.

    Article  Google Scholar 

  19. Uzun B, Kafkas U, Yaylı MÖ. Free vibration analysis of nanotube based sensors including rotary inertia based on the Rayleigh beam and modified couple stress theories. Microsyst Technol. 2021;27(5):1913–23.

    Article  Google Scholar 

  20. Akbarzadeh Khorshidi M. Postbuckling of viscoelastic micro/nanobeams embedded in visco-Pasternak foundations based on the modified couple stress theory. Mech Time Depend Mater. 2021;25(2):265–78.

    Article  ADS  Google Scholar 

  21. Alizadeh Hamidi B, Khosravi F, Hosseini SA, Hassannejad R. Free torsional vibration of triangle microwire based on modified couple stress theory. J Strain Anal Eng Des. 2020;55(7–8):237–45.

    Article  Google Scholar 

  22. Banerjee JR. Free vibration of micro-beams and frameworks using the dynamic stiffness method and modified couple stress theory. In: Modern Trends in Structural and Solid Mechanics 2: Vibrations; 2021. p. 79–107. https://doi.org/10.1002/9781119831860.ch4.

  23. Zanoosi AAP. Size-dependent thermo-mechanical free vibration analysis of functionally graded porous microbeams based on modified strain gradient theory. J Braz Soc Mech Sci Eng. 2020;42(5):1–18.

    Article  Google Scholar 

  24. Mohammad-Abadi M, Daneshmehr AR. Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions. Int J Eng Sci. 2014;74:1–14.

    Article  MathSciNet  Google Scholar 

  25. Jalali MH, Zargar O, Baghani M. Size-dependent vibration analysis of FG microbeams in thermal environment based on modified couple stress theory. Iran J Sci Technol Trans Mech Eng. 2019;43(1):761–71.

    Article  Google Scholar 

  26. Ma HM, Gao XL, Reddy J. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids. 2008;56(12):3379–91.

    Article  MathSciNet  ADS  Google Scholar 

  27. Ghafarian M, Ariaei A. Forced vibration analysis of a Timoshenko beam featuring bending-torsion on Pasternak foundation. Appl Math Model. 2019;66:472–85.

    Article  MathSciNet  Google Scholar 

  28. Fu Y, Zhang J. Modeling and analysis of microtubules based on a modified couple stress theory. Physica E. 2010;42(5):1741–5.

    Article  CAS  ADS  Google Scholar 

  29. Tadi Beni Y, Karimi Zeverdejani M. Free vibration of microtubules as elastic shell model based on midified couple stress theory. J Mech Med Biol. 2015;15(03):1550037.

    Article  Google Scholar 

  30. Ebrahimi N, Beni YT. Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel Compos Struct. 2016;22(6):1301–36.

    Article  Google Scholar 

  31. Zeighampour H, Tadi Beni Y. Cylindrical thin-shell model based on modified strain gradient theory. Int J Eng Sci. 2014;78:27–47.

    Article  MathSciNet  CAS  Google Scholar 

  32. Mehralian F, Tadi Beni Y. Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory. J Braz Soc Mech Sci Eng. 2018;40:27.

    Article  Google Scholar 

  33. Yang FACM, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39(10):2731–43.

    Article  Google Scholar 

  34. Ng CHW, Zhao YB, Xiang Y, Wei GW. On the accuracy and stability of a variety of differential quadrature formulations for the vibration analysis of beams. Int J Eng Appl Sci. 2009;1(4):1–25.

    Google Scholar 

  35. Tornabene F, Fantuzzi N, Bacciocchi M. Strong and weak formulations based on differential and integral quadrature methods for the free vibration analysis of composite plates and shells: convergence and accuracy. Eng Anal Bound Elem. 2018;92:3–37.

    Article  MathSciNet  Google Scholar 

  36. Fantuzzi N, Tornabene F, Bacciocchi M, Neves AM, Ferreira AJ. Stability and accuracy of three Fourier expansion-based strong form finite elements for the free vibration analysis of laminated composite plates. Int J Numer Methods Eng. 2017;111(4):354–82.

    Article  MathSciNet  Google Scholar 

  37. Tornabene F, Fantuzzi N, Ubertini F, Viola E. Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev. 2015;67(2):020801.

    Article  ADS  Google Scholar 

  38. Li J, Shen R, Hua H, Jin X. Coupled bending and torsional vibration of axially loaded thin-walled Timoshenko beams. Int J Mech Sci. 2004;46(2):299–320.

    Article  Google Scholar 

  39. Ke LL, Wang YS, Yang J, Kitipornchai S. Nonlinear free vibration of size-dependent functionally graded microbeams. Int J Eng Sci. 2012;50(1):256–67.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Tadi Beni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$${m}_{11}=2{l}^{2}G{\chi }_{11}=-{l}^{2}G {\psi }^{^{\prime}},$$
(21)
$${m}_{12}=2{l}^{2}G{\chi }_{12}=\frac{1}{2}{l}^{2}G \left({h}^{^{\prime\prime}}-x{\psi }^{{{\prime}}{^{\prime}}}+{\theta }^{^{\prime}}\right),$$
(22)
$${m}_{22}=2{l}^{2}G{\chi }_{22}=2{l}^{2}G {\psi }^{^{\prime}},$$
(23)
$${m}_{33}=2{l}^{2}G{\chi }_{33}=-{l}^{2}G {\psi }^{^{\prime}},$$
(24)
$${m}_{23}=2{l}^{2}G{\chi }_{23}=-\frac{1}{2}{l}^{2}Gz {\psi }^{^{\prime}},$$
(25)
$${\sigma }_{11}={\sigma }_{33}={\sigma }_{13}=0,$$
(26)
$${\sigma }_{22=-EZ{\theta }^{^{\prime}}},$$
(27)
$${\sigma }_{12}=-GZ{\psi }^{^{\prime}},$$
(28)
$${\sigma }_{23}=G\left({w}^{^{\prime}}-x{\psi }^{^{\prime}}- \theta \right).$$
(29)

Appendix B

The bending–torsion coupled governing motion equations of axially loaded Timoshenko microbeam after applying the GDQ method may be written in the following form

$$EI\mathop \sum \limits_{j = 1}^{N} C_{ij}^{\left( 2 \right)} \theta_{j} + kAG\mathop \sum \limits_{j = 1}^{N} C_{ij}^{\left( 1 \right)} w_{j} - kAG\theta_{i} + \frac{1}{4}GAl^{2} \mathop \sum \limits_{j = 1}^{N} C_{ij}^{\left( 3 \right)} w_{j} + \frac{1}{4}GAl^{2} \mathop \sum \limits_{j = 1}^{N} C_{ij}^{\left( 2 \right)} \theta_{j} - \frac{1}{4}GAl^{2} x_{\alpha } \mathop \sum \limits_{j = 1}^{N} C_{ij}^{\left( 3 \right)} \psi_{j} = \rho I\ddot{\theta },$$
(30)
$$kAG\sum_{j=1}^{N}{C}_{ij}^{\left(2\right)}{w}_{j}-kAG\sum_{j=1}^{N}{C}_{ij}^{\left(1\right)}{\theta }_{j}-P\sum_{j=1}^{N}{C}_{ij}^{\left(2\right)}{w}_{j}+P{x}_{\alpha }\sum_{j=1}^{N}{C}_{ij}^{\left(2\right)}{\psi }_{j}-\frac{1}{4}GA{l}^{2}\sum_{j=1}^{N}{C}_{ij}^{\left(4\right)}{w}_{j}-\frac{1}{4}GA{l}^{2}\sum_{j=1}^{N}{C}_{ij}^{\left(3\right)}{\theta }_{j}+\frac{1}{4}GA{l}^{2}{x}_{\alpha }\sum_{j=1}^{N}{C}_{ij}^{\left(4\right)}{\psi }_{j}=m\ddot{w}-m{x}_{\alpha }\ddot{\psi },$$
(31)
$$GJ\sum_{j=1}^{N}{C}_{ij}^{\left(2\right)}{\psi }_{j}-P\frac{{I}_{\alpha }}{m}\sum_{j=1}^{N}{C}_{ij}^{\left(2\right)}{\psi }_{j}+P{x}_{\alpha }\sum_{j=1}^{N}{C}_{ij}^{\left(2\right)}{w}_{j}+3GA{l}^{2}\sum_{j=1}^{N}{C}_{ij}^{\left(2\right)}{\psi }_{j}-\frac{1}{4}GJ{l}^{2}\sum_{j=1}^{N}{C}_{ij}^{\left(4\right)}{\psi }_{j}+\frac{1}{4}GA{l}^{2}{x}_{\alpha }\sum_{j=1}^{N}{C}_{ij}^{\left(3\right)}{\theta }_{j}+ \frac{1}{4}GA{l}^{2}{x}_{\alpha }\sum_{j=1}^{N}{C}_{ij}^{\left(4\right)}{w}_{j}={I}_{\alpha }\ddot{\psi }-m{x}_{\alpha }\ddot{w.}$$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balali Dehkordi, H.R., Tadi Beni, Y. Size-dependent coupled bending–torsional vibration of Timoshenko microbeams. Archiv.Civ.Mech.Eng 22, 124 (2022). https://doi.org/10.1007/s43452-022-00435-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00435-3

Keywords

Navigation