Skip to main content
Log in

Influence of Fe, Cr, and Cu addition on the microstructure, hardness, and anticorrosion properties of Al–Ni–Y alloys

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This study evaluated the structural changes of Al–Ni–(Fe,Cr,Cu)–Y alloys induced by different cooling states. The aim was to determine the role of Fe, Cr, and Cu addition as well as cooling rate on the structure, hardness and anticorrosion properties of crystalline and nanocrystalline Al–Ni–Y alloys. The impact of the preparation method on the structure of alloys was observed by the broadening of the X-ray diffraction peaks of the alloys in the form of plates, which indicated structure fragmentation at a high cooling rate. The TEM images showed the formation of a structure composed of homogeneously dispersed α-Al nanograins. Phase analysis performed using X-ray diffraction method and Mössbauer spectroscopy revealed that the slowly cooled master alloys were mainly composed of Al23Ni6Y4, Al10Fe2Y, and α-Al phases. The Al10Fe2Y structure was the main Fe-bearing phase in all investigated master alloys. A crystallization mechanism was proposed based on the DTA heating and cooling curves. The pitting corrosion type was identified based on morphology observations after electrochemical tests. Rapid solidification and the addition of chromium and copper improved the microhardness as well as corrosion resistance. The high increase of hardness (289 HV0.1) and corrosion resistance (Ecorr = − 0.629 V vs. SCE, jcorr = 2.19 μA cm−2, vcorr = 0.07 mm/year) was noted for the Al85Ni2.5Fe2.5Cr2.5Cu2.5Y5 alloy in a plate form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jindal R, Raja VS, Gibson MA, Styles MJ, Bastow TJ, Hutchinson CR. Effect of annealing below the crystallization temperature on the corrosion behavior of Al-Ni-Y metallic glasses. Corros Sci. 2014;84:54–65. https://doi.org/10.1016/j.corsci.2014.03.015.

    Article  CAS  Google Scholar 

  2. Inoue A, Kimura H. Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system. J Light Met. 2001;1:31–41. https://doi.org/10.1016/S1471-5317(00)00004-3.

    Article  Google Scholar 

  3. Inoue A. Bulk amorphous and nanocrystalline alloys with high functional properties. Mater Sci Eng A. 2001;304–306:1–10. https://doi.org/10.1016/S0921-5093(00)01551-3.

    Article  Google Scholar 

  4. Abrosimova G, Aronin A. Amorphous and Nanocrystalline Metallic Alloys. In: Glebovsky V, editor. Progress in Metallic Alloys. London: IntechOpen; 2016. https://doi.org/10.5772/64499.

    Chapter  Google Scholar 

  5. Seikh AH, Baig M, Ammar HR, Alam MA. The influence of transition metals addition on the corrosion resistance of nanocrystalline al alloys produced by mechanical alloying. Metals (Basel). 2016;6:8–13. https://doi.org/10.3390/met6060140.

    Article  Google Scholar 

  6. Liu L, Li Y, Wang F. Electrochemical corrosion behavior of nanocrystalline materials—a review. J Mater Sci Technol. 2010;26:1–14. https://doi.org/10.1016/S1005-0302(10)60001-1.

    Article  ADS  Google Scholar 

  7. Shen Y, Perepezko JH. Al-based amorphous alloys: glass-forming ability, crystallization behavior and effects of minor alloying additions. J Alloys Compd. 2017;707:3–11. https://doi.org/10.1016/j.jallcom.2016.11.079.

    Article  CAS  Google Scholar 

  8. Kiminami CS, Bassim ND, Kaufman MJ, Amateau MF, Eden TJ, Galbraith JM. Challenges in the development of aluminium-based bulk amorphous alloys. Key Eng Mater. 2001;189–191:503–8. https://doi.org/10.4028/www.scientific.net/kem.189-191.503.

    Article  Google Scholar 

  9. Das SK, Davis LA. High performance aerospace alloys via rapid solidification processing. Mater Sci Eng. 1988;98:1–12. https://doi.org/10.1016/0025-5416(88)90116-4.

    Article  CAS  Google Scholar 

  10. Rizzi P, Baricco M, Borace S, Battezzati L. Phase selection in Al-TM-RE alloys: nanocrystalline Al versus intermetallics. Mater Sci Eng A. 2001;304–306:574–8. https://doi.org/10.1016/S0921-5093(00)01537-9.

    Article  Google Scholar 

  11. Gupta RK, Fabijanic D, Zhang R, Birbilis N. Corrosion behaviour and hardness of in situ consolidated nanostructured Al and Al-Cr alloys produced via high-energy ball milling. Corros Sci. 2015;98:643–50. https://doi.org/10.1016/j.corsci.2015.06.011.

    Article  CAS  Google Scholar 

  12. Fathy A, El-Kady O, Mohammed MMM, Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route, Trans. Nonferrous Met. Soc. China. 2015;25:46–53. https://doi.org/10.1016/S1003-6326(15)63577-4

    Article  CAS  Google Scholar 

  13. Vargel C. The metallurgy of aluminium. In: Corrosion of aluminium. 2nd ed. New York: Elsevier; 2004. p. 23–57. https://doi.org/10.1016/b978-008044495-6/50008-2.

    Chapter  Google Scholar 

  14. Rana RS, Purohit R, Das S. Reviews on the Influences of Alloying elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites. Int. J. Sci. Res. Publ. 2012;2:1–7.

  15. Li Q, Li B, Li J, Zhu Y, Xia T. Effect of yttrium addition on the microstructures and mechanical properties of hypereutectic Al-20Si alloy. Mater Sci Eng A. 2018;722:47–57. https://doi.org/10.1016/j.msea.2018.03.015.

    Article  CAS  Google Scholar 

  16. Zhang LM, Zhang SD, Ma AL, Hu HX, Zheng YG, Yang BJ, Wang JQ. Thermally induced structure evolution on the corrosion behavior of Al-Ni-Y amorphous alloys. Corros Sci. 2018;144:172–83. https://doi.org/10.1016/j.corsci.2018.08.046.

    Article  ADS  CAS  Google Scholar 

  17. Babilas R, Młynarek K, Łoński W, Lis M, Łukowiec D, Kądziołka-Gaweł M, Warski T, Radoń A. Analysis of thermodynamic parameters for designing quasicrystalline Al-Ni-Fe alloys with enhanced corrosion resistance. J Alloys Compd. 2021;868: 159241. https://doi.org/10.1016/j.jallcom.2021.159241.

    Article  CAS  Google Scholar 

  18. Inoue A, Horio Y, Masumoto T. New amorphous Al-Ni-Fe and Al-Ni-Co Alloys. Mater Trans JIM. 1993;34:85–8. https://doi.org/10.2320/matertrans1989.34.85.

    Article  CAS  Google Scholar 

  19. Babilas R, Spilka M, Młynarek K, Łoński W, Łukowiec D, Radoń A, Kądziołka-Gaweł M, Gębara P. Glass-forming ability and corrosion resistance of Al88Y8-xFe4+x (x= 0, 1, 2 at.%) alloys. Materials (Basel). 2021;14:1–12.

    Article  Google Scholar 

  20. Sasaki TT, Ohkubo T, Hono K. Microstructure and mechanical properties of bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater. 2009;57:3529–38. https://doi.org/10.1016/j.actamat.2009.04.012.

    Article  ADS  CAS  Google Scholar 

  21. Kuball A, Stolpe M, Busch R. Crystallization behavior of the Al86Ni8Y6 metallic glass forming alloy upon rapid cooling. J Alloys Compd. 2018;737:398–404. https://doi.org/10.1016/j.jallcom.2017.12.044.

    Article  CAS  Google Scholar 

  22. Inoue A, Ohtera K, Tsai AP, and Masumoto T, Aluminum-Based Amorphous Alloys with Tensile Strength above 980 MPa (100 kg/mm2), Jpn. J. Appl. Phys. 1988;27:L479-L482. https://doi.org/10.1143/JJAP.27.L479

    Article  Google Scholar 

  23. Yang BJ, Yao JH, Chao YS, Wang JQ, Ma E. Developing aluminum-based bulk metallic glasses. Philos Mag. 2010;90:3215–31. https://doi.org/10.1080/14786435.2010.484401.

    Article  ADS  CAS  Google Scholar 

  24. Raggio R, Borzone G, Ferro R. The Al-rich region in the Y-Ni-Al system: microstructures and phase equilibria. Intermetallics. 2000;8:247–57. https://doi.org/10.1016/S0966-9795(99)00100-4.

    Article  CAS  Google Scholar 

  25. Vasiliev AL, Aindow M, Blackburn MJ, Watson TJ. Phase stability and microstructure in devitrified Al-rich Al-Y-Ni alloys. Intermetallics. 2004;12:349–62. https://doi.org/10.1016/j.intermet.2003.11.007.

    Article  CAS  Google Scholar 

  26. Raghavan V. Al-Ni-Y (Aluminum-Nickel-Yttrium). J Phase Equilibria Diffus. 2010;31:57–8. https://doi.org/10.1007/s11669-009-9625-8.

    Article  CAS  Google Scholar 

  27. Yang BJ, Lu WY, Zhang JL, Wang JQ, Ma E. Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses. Sci Rep. 2017;7:1–16. https://doi.org/10.1038/s41598-017-11504-6.

    Article  ADS  CAS  Google Scholar 

  28. Babilas R, Łoński W, Młynarek K, Bajorek A, Radoń A. Relationship between the thermodynamic parameters, structure, and anticorrosion properties of Al-Zr-Ni-Fe-Y alloys. Metall Mater Trans A. 2020;51:4215–27. https://doi.org/10.1007/s11661-020-05833-x.

    Article  CAS  Google Scholar 

  29. Dunlap R, Dahn J, Eelman D, MacKay G. Microstructure of supersaturated fcc Al–Fe alloys: a comparison of rapidly quenched and mechanically alloyed Al98Fe2. Hyperfine Interact. 1998;116:117–26. https://doi.org/10.1023/A:1012685713970.

    Article  CAS  Google Scholar 

  30. Waerenborgh J, Salamakha P, Sologub O, Serio S, Godinho M, Goncalves A, Almeida M. Y-Fe–Al ternary system: partial isothermal section at 1070 K powder X-ray diffraction and mossbauer spectroscopy study. J Alloy Compd. 2001;323:78–82. https://doi.org/10.1016/S0925-8388(01)00990-2.

    Article  Google Scholar 

  31. van der Woude F, Schurer P. A study of quasi-crystalline Al-Fe alloys by Mossbauer-effect spectroscopy and diffraction techniques. Can J Phys. 1987;65:1301–8. https://doi.org/10.1139/p87-205.

    Article  ADS  Google Scholar 

  32. Bėčytė L, Mažeika K, Juškėnas R. Study of the iron atom clustering in mechanically alloyed Al-rich Fe-Al mixture. Lith J Phys. 2014;54:199–203. https://doi.org/10.3952/physics.v54i3.2960.

    Article  Google Scholar 

  33. Sitek J, Degmová J. Aluminium-based amorphous and nanocrystalline alloys with Fe impurity. Czechoslov J Phys. 2006;56:17–22. https://doi.org/10.1007/s10582-006-0467-x.

    Article  ADS  Google Scholar 

  34. Srinivas V, Dunlap RA. Structural and electrical properties of AlCuFe quasicrystals. Philos Mag B. 1991;64:475–84. https://doi.org/10.1080/13642819108215270.

    Article  ADS  CAS  Google Scholar 

  35. Derman MN, Jeffry MR, Kumar R. Corrosion behavior of Al-Cu-Ni-Y alloys. Adv Mater Res. 2013;795:535–9. https://doi.org/10.4028/www.scientific.net/AMR.795.535.

    Article  CAS  Google Scholar 

  36. Grilli R, Baker MA, Castle JE, Dunn B, Watts JF. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution. Corros Sci. 2010;52:2855–66. https://doi.org/10.1016/j.corsci.2010.04.035.

    Article  CAS  Google Scholar 

  37. Arthanari S, Jang JC, Shin KS. Corrosion behavior of high pressure die cast Al-Ni and Al-Ni-Ca alloys in 3.5% NaCl solution. Corros Sci Technol. 2017;16:100–8. https://doi.org/10.14773/CST.2017.16.3.100.

    Article  CAS  Google Scholar 

  38. Singh G, Singh D, Dhindsa GS, Singh G, Singh P. Corrosion in aircraft components: types, impacts and protection measures. Int J Adv Sci Technol. 2020;29:4891–6.

    Google Scholar 

  39. Lachowicz MM, Jasionowski R. Effect of cooling rate at the eutectoid transformation temperature on the corrosion resistance of Zn-4Al alloy. Materials (Basel). 2020;13:19–21. https://doi.org/10.3390/ma13071703.

    Article  CAS  Google Scholar 

  40. Zhang LM, Ma AL, Hu HX, Zheng YG, Yang BJ, Wang JQ. Effect of microalloying with Ti or Cr on the corrosion behavior of Al-Ni-Y amorphous alloys. Corrosion. 2018;74:66–74. https://doi.org/10.5006/2451.

    Article  CAS  Google Scholar 

  41. Ribeiro TM, Catellan E, Garcia A, dos Santos CA. The effects of Cr addition on microstructure, hardness and tensile properties of as-cast Al-3.8 wt%Cu-(Cr) alloys. J Mater Res Technol. 2020;9:6620–31. https://doi.org/10.1016/j.jmrt.2020.04.054.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Science Centre of Poland under research project no. 2018/29/B/ST8/02264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Babilas.

Ethics declarations

Conflict of interest

All the authors of the article declare that during the implementation of the research presented in the article there was no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babilas, R., Młynarek-Żak, K., Łoński, W. et al. Influence of Fe, Cr, and Cu addition on the microstructure, hardness, and anticorrosion properties of Al–Ni–Y alloys. Archiv.Civ.Mech.Eng 22, 82 (2022). https://doi.org/10.1007/s43452-022-00404-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00404-w

Keywords

Navigation