Skip to main content
Log in

Microstructural and mechanical properties of CFC composite/Ti6Al4V joints brazed with Ag–Cu–Ti and refractory metal foils

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Carbon fiber-reinforced carbon composite (CFC)/Ti6Al4V alloy brazing has been performed with Ag–Cu–Ti braze and Nb (or W) foil. Satisfactory bonding is achieved at the interfaces among substrates, refractory metal layer and fillers. The joining region consists of filler I, refractory metal layer and filler II. The fillers I and II are composed of Ag-based solid solution, TiCu and Cu-based solid solution. A diffusion layer (comprising Ti-based solid solution and Ti2Cu) and a thin TiC reaction layer develop adjacent to Ti6Al4V and CFC substrates, respectively. Regarding the joining with Nb foil, slight dissolution and diffusion occur between Nb and Ti in the fillers upon brazing. However, neither inter-diffusions nor reactions between W and fillers are involved in CFC/Ti6Al4V joining with W foil. The average shear strengths of joints with Nb and W foils are about 200% higher than those without refractory metal foil, indicating that the thermal mismatch in the joint can be relieved by the introduced refractory metal foils with appropriate coefficients of thermal expansion. Moreover, Nb foil with high ductility is beneficial for the inhibition of both the micro-crack propagation and the brittle-phase formation in the joint. W foil can act as a hard barrier to adjust the joint stress distribution and to decrease the joint stress concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data during the study are available from the corresponding author by request.

References

  1. Djugum R, Sharp K. The fabrication and performance of C/C composites impregnated with TaC filler. Carbon. 2017;115:105–15. https://doi.org/10.1016/j.carbon.2016.12.019.

    Article  Google Scholar 

  2. Xiong JT, Li JL, Zhang FS, Lin X, Huang WD. Direct joining of 2D carbon/carbon composites to Ti-6Al-4V alloy with a rectangular wave interface. Mater Sci Eng A. 2008;448(1–2):205–13. https://doi.org/10.1016/j.msea.2007.11.013.

    Article  Google Scholar 

  3. Guo W, Wang L, Zhu Y, Chu PK. Microstructure and mechanical properties of C/C composite/TC4 joint with inactive AgCu filler metal. Ceram Int. 2015;41(5):7021–7. https://doi.org/10.1016/j.ceramint.2015.02.006.

    Article  Google Scholar 

  4. Singh M, Shpargel TP, Morscher GN, Asthana R. Active metal brazing and characterization of brazed joints in titanium to carbon-carbon composites. Mater Sci Eng A. 2005;412(1–2):123–8. https://doi.org/10.1016/j.msea.2005.08.179.

    Article  Google Scholar 

  5. Mao Y, Wang S, Peng L, Deng Q, Zhao P, Guo B, et al. Brazing of graphite to Cu with Cu50TiH2 + C composite filler. J Mater Sci. 2016;51(4):1671–9. https://doi.org/10.1007/s10853-015-9415-0.

    Article  Google Scholar 

  6. Zhou YH, Liu D, Niu HW, Song XG, Yang XD, Feng JC. Vacuum brazing of C/C composite to TC4 alloy using nano-Al2O3 strengthened AgCuTi composite filler. Mater Des. 2016;93:347–56. https://doi.org/10.1016/j.matdes.2015.12.143.

    Article  Google Scholar 

  7. Song XR, Li HJ, Zeng X. Brazing of C/C composites to Ti6Al4V using multiwall carbon nanotubes reinforced TiCuZrNi brazing alloy. J Alloys Compd. 2016;664:175–80. https://doi.org/10.1016/j.jallcom.2015.12.242.

    Article  Google Scholar 

  8. Ba J, Wang YH, Liu YL, Lin JH, Qi JL, Wang G, et al. In situ consume excessive Ti element and form fine Ti based compounds as reinforcements for strengthening C/C-TC4 joints. Vacuum. 2017;143:303–11. https://doi.org/10.1016/j.vacuum.2017.06.035.

    Article  Google Scholar 

  9. Song XR, Li HJ, Casalegno V, Salvo M, Ferraris M, Zeng XR. In situ TiC particle reinforced TiCuZrNi brazing alloy for joining C/C composites to Ti6Al4V. Int J Appl Ceram Technol. 2018;15(3):611–8. https://doi.org/10.1111/ijac.12863.

    Article  Google Scholar 

  10. Peng S, Mao Y, Min M, Xi L, Deng Q, Wang G, et al. Joining of tungsten to CuCrZr alloy with Cu–TiH2–Ni filler and Cu interlayer. Int J Refract Met Hard Mater. 2019;79:31–6. https://doi.org/10.1016/j.ijrmhm.2018.11.005.

    Article  Google Scholar 

  11. Hao ZT, Wang DP, Yang ZW, Wang Y. Microstructure and mechanical properties of Ti2AlNb alloy and C/C composite joints brazed with Ag–Cu–Zn and Ag–Cu–Zn/Cu/Ag–Cu–Ti filler metals. Arch Civ Mech Eng. 2019;19(4):1083–94. https://doi.org/10.1016/j.acme.2019.04.008.

    Article  Google Scholar 

  12. Li C, Si XQ, Cao J, Qi JL, Dong ZB, Feng JC. Residual stress distribution as a function of depth in graphite/copper brazing joints via X-ray diffraction. J Mater Sci Technol. 2019;35(11):2470–6. https://doi.org/10.1016/j.jmst.2019.07.023.

    Article  Google Scholar 

  13. Liu WS, Wang ZX, Ma YZ, Cai QS. Investigation of tungsten/steel brazing using Ta and Cu interlayer. Fusion Eng Des. 2016;113:102–8. https://doi.org/10.1016/j.fusengdes.2016.11.004.

    Article  Google Scholar 

  14. Gao Y, Huang L, Bao Y, An Q, Sun Y, Zhang R, et al. Joints of TiBw/Ti6Al4V composites—inconel 718 alloys dissimilar joining using Nb and Cu interlayers. J Alloys Compd. 2020;822: 153559. https://doi.org/10.1016/j.jallcom.2019.153559.

    Article  Google Scholar 

  15. Pan R, Kovacevic S, Lin T, He P, Sekulic DP, Mesarovic SD, et al. Control of residual stresses in 2Si-B-3C-N and Nb joints by the Ag–Cu–Ti + Mo composite interlayer. Mater Des. 2016;99:193–200. https://doi.org/10.1016/j.matdes.2016.03.072.

    Article  Google Scholar 

  16. Qin YQ, Feng JC. Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers. Mater Sci Eng A. 2009;525(1–2):181–5. https://doi.org/10.1016/j.msea.2009.06.049.

    Article  Google Scholar 

  17. Zhang LX, Zhang B, Sun Z, Pan XY, Shi JM, Feng JC. Preparation of graded double-layer materials for brazing C/C composite and TC4. J Alloys Compd. 2020;825: 153639. https://doi.org/10.1016/j.jallcom.2020.153639.

    Article  Google Scholar 

  18. Warlimont H, Martienssen W, editors. Springer handbook of materials data. 2nd ed. Berlin: Springer; 2018.

    Google Scholar 

  19. Min M, Mao Y, Deng Q, Wang G, Wang S. Vacuum brazing of Mo to 316L stainless steel using BNi-2 paste and Cu interlayer. Vacuum. 2020;175: 109282. https://doi.org/10.1016/j.vacuum.2020.109282.

    Article  Google Scholar 

  20. Mao Y, Yu S, Zhang Y, Guo B, Ma Z, Deng Q. Microstructure analysis of graphite/Cu joints brazed with (Cu-50TiH2)+B composite filler. Fusion Eng Des. 2015;100:152–8. https://doi.org/10.1016/j.fusengdes.2015.05.011.

    Article  Google Scholar 

  21. Guo W, Zhu Y, Wang L, Qu P, Kang H, Chu PK. Microstructure evolution and mechanical properties of vacuum-brazed C/C composite with AgCuTi foil. Mater Sci Eng A. 2013;564:192–8. https://doi.org/10.1016/j.msea.2012.11.057.

    Article  Google Scholar 

  22. Liu D, Niu HW, Zhou YH, Song XG, Tang DY, Feng JC. Brazing continuous carbon fiber reinforced Li2O–Al2O3–SiO2 ceramic matrix composites to Ti–6Al–4V alloy using Ag–Cu–Ti active filler metal. Mater Des. 2015;87:42–8. https://doi.org/10.1016/j.matdes.2015.08.005.

    Article  Google Scholar 

  23. Duan Y, Mao Y, Xu Z, Deng Q, Wang G, Wang S. Joining of graphite to Ti6Al4V alloy using Cu-based fillers. Adv Eng Mater. 2019;21(11):1900719. https://doi.org/10.1002/adem.201900719.

    Article  Google Scholar 

  24. Singh M, Smith CE, Asthana R, Gyekenyesi AL. Active metal brazing of graphite foam-to-titanium joints made with SiC-Coated foam. J Eur Ceram Soc. 2020;40(7):2533–41. https://doi.org/10.1016/j.jeurceramsoc.2019.12.048.

    Article  Google Scholar 

  25. Yi ZH, Ran LP, Yi MZ. Differences in microstructure and properties of C/C composites brazed with Ag–Cu–Ti and Ni–Cr–P–Ti pasty brazing filler. Vacuum. 2019;168: 108804. https://doi.org/10.1016/j.vacuum.2019.108804.

    Article  Google Scholar 

  26. Wang YL, Wang WL, Huang JH, Yu RH, Yang J, Chen SH. Reactive composite brazing of C/C composite and GH3044 with Ag–Ti mixed powder filler material. Mater Sci Eng A. 2019;759:303–12. https://doi.org/10.1016/j.msea.2019.05.065.

    Article  Google Scholar 

  27. Shiue RK, Wu SK, Chan CH. The interfacial reactions of infrared brazing Cu and Ti with two silver-based braze alloys. J Alloy Compd. 2004;372(1–2):148–57. https://doi.org/10.1016/j.jallcom.2003.09.155.

    Article  Google Scholar 

  28. Ali M, Knowles KM, Mallinson PM, Fernie JA. Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys. Acta Mater. 2016;103:859–69. https://doi.org/10.1016/j.actamat.2015.11.019.

    Article  Google Scholar 

  29. Cao XJ, Zhu Y, Guo W, Peng P, Ma K. Microstructure and mechanical properties of C/C composite/TC17 joints with Ag–Cu–Ti brazing alloy. IOP Conf Ser Mater Sci Eng. 2017;275(1): 012040. https://doi.org/10.1088/1757-899X/275/1/012040.

    Article  Google Scholar 

  30. Baren MR. The Ag–Nb (Silver–Niobium) system. Bull Alloy Phase Diagrams. 1989;10:640. https://doi.org/10.1007/BF02877632.

    Article  Google Scholar 

  31. Okamoto H, Schlesinger ME, Mueller EM, (eds). ASM Handbook, Vol 3. In: Alloy Phase Diagrams. 2nd edn. Materials Park, OH. 2016.

  32. Wang ZY, Li MN, Ba J, Ma Q, Fan ZQ, Lin JH, et al. In-Situ synthesized TiC nano-flakes reinforced C/C composite-Nb brazed joint. J Eur Ceram Soc. 2018;38(4):1059–68. https://doi.org/10.1016/j.jeurceramsoc.2017.11.059.

    Article  Google Scholar 

  33. Qin YQ, Yu ZS. Joining of C/C composite to TC4 using SiC particle-reinforced brazing alloy. Mater Charact. 2010;61(6):635–9. https://doi.org/10.1016/j.matchar.2010.03.008.

    Article  Google Scholar 

  34. Shang JL, Yan JZ, Li N. Brazing W and Fe–Ni–Co alloy using Ag-28Cu and Ag-27Cu-3.5Ti fillers. J Alloys Compd. 2014;611:91–5. https://doi.org/10.1016/j.jallcom.2014.05.106.

    Article  Google Scholar 

  35. de Prado J, Sánchez M, Ureña A. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel. J Nucl Mater. 2017;490:188–96. https://doi.org/10.1016/j.jnucmat.2017.04.033.

    Article  Google Scholar 

  36. Sharma A, Ahn B. Brazeability, microstructure, and joint characteristics of ZrO2/Ti–6Al–4V brazed by Ag–Cu–Ti filler reinforced with cerium oxide nanoparticles. Adv Mater Sci Eng. 2019;2019:8602632. https://doi.org/10.1155/2019/8602632.

    Article  Google Scholar 

  37. Li J, Vivek A, Daehn G. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer. J Mater Sci Technol. 2021;79:191–204. https://doi.org/10.1016/j.jmst.2020.11.050.

    Article  Google Scholar 

  38. Peng L, Mao Y, Zhang Y, Xi L, Deng Q, Wang G. Microstructural and mechanical characterizations of W/CuCrZr and W/steel joints brazed with Cu-22TiH2 filler. J Mater Process Technol. 2018;254:346–52. https://doi.org/10.1016/j.jmatprotec.2017.11.056.

    Article  Google Scholar 

  39. Hao XH, Dong HG, Li S, Xu XX, Li P. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by gtaw using copper-based filler wire. J Mater Process Technol. 2018;257:88–100. https://doi.org/10.1016/j.jmatprotec.2018.02.020.

    Article  Google Scholar 

  40. Zhu DY, Ma ML, Jin ZH, Wang YL. The effect of molybdenum net interlayer on thermal shock resistance of Al2O3/Nb brazed joint. J Mater Process Technol. 1999;96(1–3):19–21. https://doi.org/10.1016/S0924-0136(99)00078-3.

    Article  Google Scholar 

  41. Xing LL, Lin JC, Huang M, Yang WQ. Joining of graphite to copper with Nb interlayer: microstructure and mechanical properties. Adv Eng Mater. 2019;21(2):1800810. https://doi.org/10.1002/adem.201800810.

    Article  Google Scholar 

  42. Ma X, Mao Y, Duan Y, Deng Q, Wang G, Wang S. Effect of Nb or Ta interlayer on microstructure and mechanical properties of graphite/Ti6Al4V alloy joints. Adv Eng Mater. 2021;23(4):2001237. https://doi.org/10.1002/adem.202001237.

    Article  Google Scholar 

  43. Ong FS, Tobe H, Sato E. Intermetallics evolution and fracture behavior of Nb interlayer inserted Si3N4/Ti joints brazed with AgCuTi filler. Mater Sci Eng A. 2019;762: 138096. https://doi.org/10.1016/j.msea.2019.138096.

    Article  Google Scholar 

  44. Oliveira JP, Panton B, Zeng Z, Andrei CM, Zhou Y, Miranda RM, et al. Laser joining of NiTi to Ti6Al4V using a Niobium interlayer. Acta Mater. 2016;105:9–15. https://doi.org/10.1016/j.actamat.2015.12.021.

    Article  Google Scholar 

  45. Li WW, Chen B, Xiong HP, Zou WJ, Ren HS. Joining of Cf/SiC composite to GH783 superalloy with NiPdPtAu–Cr filler alloy and a Mo interlayer. J Mater Sci Technol. 2019;35(9):2099–106. https://doi.org/10.1016/j.jmst.2019.04.011.

    Article  Google Scholar 

  46. Zhong ZH, Zhou ZJ, Ge CC. Brazing of doped graphite to Cu using stress relief interlayers. J Mater Process Technol. 2009;209(5):2662–70. https://doi.org/10.1016/j.jmatprotec.2008.06.021.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51304148) and the WIT Graduate Education Innovation Fund (Grant No. CX2020146).

Author information

Authors and Affiliations

Authors

Contributions

YK: Investigation, Methodology, Writing-Original draft. KF: Investigation, Data curation. WZ: Validation. YM: Conceptualization, Resources, Supervision, Writing-review and editing.

Corresponding author

Correspondence to Yangwu Mao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Feng, K., Zhang, W. et al. Microstructural and mechanical properties of CFC composite/Ti6Al4V joints brazed with Ag–Cu–Ti and refractory metal foils. Archiv.Civ.Mech.Eng 21, 113 (2021). https://doi.org/10.1007/s43452-021-00268-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00268-6

Keywords

Navigation