Skip to main content
Log in

Fatigue tests on notched specimens of G20Mn5QT cast steel and life prediction by a new strain-based method

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Fatigue performance of notched specimens of G20Mn5QT cast steel was investigated experimentally and analytically. Fatigue tests on a total number of 22 semi-circular notched specimens were conducted with the load ratios of − 1 and 0.1. Nominal stress-fatigue life relationship was obtained, and mean stress correction rules were verified for the notched specimens based on the test results. A new strain-based approach, strain field intensity (SNFI) method, was proposed, in which fatigue life of materials is predicted based on the weighted average strain in the fatigue damage region. The fatigue lives of the test specimens were predicted using three strain-based approaches, modified Neuber’s rule, equivalent strain energy density (ESED) method and the proposed SNFI method. The fatigue life prediction by the SNFI method was in very good agreement with the test results, which verified the rationality and applicability of the proposed SNFI method and also the adopted fatigue properties of G20Mn5QT cast steel. Both the modified Neuber’s rule and the ESED method gave conservative prediction of the fatigue life of the notched specimens. The necessity of the 3-dimensional fatigue damage region was also discussed for the proposed SNFI method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

b :

Fatigue strength exponent

c :

Fatigue plastic exponent

E :

Elastic modulus

\(K^{\prime}\) :

Cyclic hardening coefficient

K f :

Fatigue notch factor

K t :

Theoretical stress concentration coefficient

\(n^{\prime}\) :

Cyclic hardening exponent

\(N_{f}^{{{\text{in}}}}\) :

Number of cycles corresponding to fatigue crack initiation

N i :

Number of cycles at a certain time

N f :

Number of cycles corresponding to fatigue fracture

R :

Load ratio, minimum load divided by maximum load

R ε :

Strain ratio, minimum strain divided by maximum strain

r eff :

The effective radius

V :

Volume of the fatigue damage region

W s :

Nominal strain energy density

W σ :

Local strain energy density

ε :

Local strain

ε 1 :

Maximum principal strain

ε a :

Local strain amplitude

\(\varepsilon^{\prime}_{f}\) :

Fatigue plastic coefficient

ε nom :

Nominal strain on the net cross section

\(\varepsilon_{{{\text{SNFI}}}}\) :

Strain field intensity

\(\varepsilon_{{{\text{SNFI, }}a}}\) :

Strain field intensity amplitude

Δε :

Local strain range

Δεnom :

Nominal strain range on the net cross section

\(\rho\) :

Notch radius

σ :

Local stress

\(\sigma^{\prime}_{f}\) :

Fatigue strength coefficient

σ nom :

Nominal stress on the net cross section

σ nom, a :

Nominal stress amplitude on the net cross section

σ nom, m :

Nominal mean stress on the net cross section

σ nom, max :

Maximum of nominal stress on the net cross section

σ u :

Tensile strength

σ y :

Yield strength

Δσ :

Local stress range

Δσnom :

Nominal stress range on the net cross section

χ :

Relative strain gradient

Ω :

Fatigue damage region

φ :

Weight function

References

  1. Luo P, Yao WX, Wang YY, Li P. A survey on fatigue life analysis approaches for metallic notched components under multi-axial loading. Proc Inst Mech Eng Part G J Aerosp Eng. 2019;233(10):3870–90.

    Article  Google Scholar 

  2. Luo P, Yao WX, Li P. A notch critical plane approach of multiaxial fatigue life prediction for metallic notched specimens. Fatigue Fract Eng Mater Struct. 2019;42(4):854–70.

    Google Scholar 

  3. Yao WX. Stress field intensity approach for predicting fatigue life. Int J Fatigue. 1993;15(3):243–6.

    Article  Google Scholar 

  4. Shang DG, Wang DK, Li M, Yao WX. Local stress–strain field intensity approach to fatigue life prediction under random cyclic loading. Int J Fatigue. 2001;23(10):903–10.

    Article  Google Scholar 

  5. Yao WX, Ye B, Zheng LC. A verification of the assumption of anti-fatigue design. Int J Fatigue. 2001;23(3):271–7.

    Article  Google Scholar 

  6. Adib H, Pluvinage G. Theoretical and numerical aspects of the volumetric approach for fatigue life prediction in notched components. Int J Fatigue. 2003;25(1):67–76.

    Article  Google Scholar 

  7. Adib-Ramezani H, Jeong J, Pluvinage G. Structural integrity evaluation of X52 gas pipes subjected to external corrosion defects using the SINTAP procedure. Int J Press Vessels Pip. 2006;83(6):420–32.

    Article  Google Scholar 

  8. Adib-Ramezani H, Jeong J. Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots. Comput Mater Sci. 2007;39(3):649–63.

    Article  Google Scholar 

  9. Negru R, Șerban DA, Marșavina L, Magda A. Lifetime prediction in medium-cycle fatigue regime of notched specimens. Theor Appl Fract Mech. 2016;84:140–8.

    Article  Google Scholar 

  10. Susmel L, Taylor D. An elasto-plastic reformulation of the theory of critical distances to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime. J Eng Mater Technol Trans ASME. 2010;132(2):1–8.

    Article  Google Scholar 

  11. Susmel L, Taylor D. On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features. Eng Fract Mech. 2008;75(15):4410–21.

    Article  Google Scholar 

  12. Susmel L, Taylor D. Estimating lifetime of notched components subjected to variable amplitude fatigue loading according to the elastoplastic theory of critical distances. J Eng Mater Technol Trans ASME. 2015;137(1):1–15.

    Article  Google Scholar 

  13. Wang R, Liu H, Hu D, Li D, Mao J. Evaluation of notch size effect on LCF life of TA19 specimens based on the stress gradient modified critical distance method. Fatigue Fract Eng Mater Struct. 2018;41(8):1794–809.

    Article  Google Scholar 

  14. Susmel L, Taylor D. The modified Wohler curve method applied along with the theory of critical distances to estimate finite life of notched components subjected to complex multiaxial loading paths. Fatigue Fract Eng Mater Struct. 2008;31(12):1047–64.

    Article  Google Scholar 

  15. Luo PJ, Zhang QH, Bao Y, Zhou AX. Fatigue evaluation of rib-to-deck welded joint using averaged strain energy density method. Eng Struct. 2018;177:682–94.

    Article  Google Scholar 

  16. Lazzarin P, Zambardi R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int J Fract. 2001;112(3):275–98.

    Article  Google Scholar 

  17. Luo PJ, Zhang QH, Bao Y. Predicting weld root notch stress intensity factors for rib-to-deck welded joint under deck loading modes. Int J Fatigue. 2019;128:1–12.

    Article  Google Scholar 

  18. Zhao YX. On the strain-based fatigue reliability analysis. Chin J Mech Eng. 2001;37(11):1–6 (in Chinese).

    Article  Google Scholar 

  19. Manson SS. Fatigue: a complex subject - some simple approximations. Exp Mech. 1965;5(7):193–226.

    Article  Google Scholar 

  20. Chen HT, Grondin GY, Driver RG. Characterization of fatigue properties of ASTM A709 high performance steel. J Constr Steel Res. 2007;63(6):838–48.

    Article  Google Scholar 

  21. Topper T, Wetzel RM, Morrow J. Neuber’s rule applied to fatigue of notched specimens. J Mater. 1969;4(1):200–9.

    Google Scholar 

  22. Molski K, Glinka G. A method of elastic-plastic stress and strain calculation at a notch root. Mater Sci Eng. 1981;50(1):93–100.

    Article  Google Scholar 

  23. Xu N, Chen JH. Energy method of local stress and strain fatigue. J Shandong Univ. 2006;36(1):15–8 (in Chinese).

    MathSciNet  Google Scholar 

  24. Ye DY, Matsuoka S, Suzuki N, Maeda Y. Further investigation of Neuber’s rule and the equivalent strain energy density (ESED) method. Int J Fatigue. 2004;26(5):447–55.

    Article  MATH  Google Scholar 

  25. Singh R, Chauhan S, Gope PC. Influence of notch radius and strain rate on the mechanical properties and fracture behavior of TIG-welded 6061 aluminum alloy. Arch Civ Mech Eng. 2016;16(3):513–23.

    Article  Google Scholar 

  26. Han QH, Guo Q, Yin Y, Xing Y. Fatigue behaviour of G20Mn5QT cast steel and butt welds with Q345B steel. Int J Steel Struct. 2016;16(1):139–49.

    Article  Google Scholar 

  27. Han QH, Guo Q, Yin Y, Xing Y. Effects of strain ratio on fatigue behavior of G20Mn5QT cast steel. Trans Tianjin Univ. 2016;22:302–7.

    Article  Google Scholar 

  28. ASTM E606–92. Standard practice for strain-controlled fatigue testing. ASTM; 2004.

  29. GB/T 15248-2008. The test method for axial loading constant-amplitude low-cycle fatigue of metallic materials. China; 2008 (in Chinese).

  30. DIN EN 10293. Steel castings for general engineering uses. Germany; 2005.

  31. GB/T 3075-2008. Metallic materials—fatigue testing—axial-force-controlled method. China; 2008 (in Chinese).

  32. HB 5287–1996. Fatigue test method of metal materials under axial loading. China; 1996 (in Chinese).

  33. Zhao SB. The anti-fatigue design manual, 2nd edn. Beijing: China Machine Press; 2015. pp. 113, 153–4, 171 (in Chinese).

  34. Bhattacharya B, Ellingwood B. Continuum damage mechanics analysis of fatigue crack initiation. Int J Fatigue. 1998;20(9):631–9.

    Article  Google Scholar 

  35. Shang DG, Wang DK. New prediction method of fatigue life under random loading. J Beijing Polytech Univ. 2001;27(4):433–6 (in Chinese).

    Google Scholar 

  36. Ye DY, Matsuoka S, Nagashima N, Suzuki N. The low-cycle fatigue, deformation and final fracture behaviour of an austenitic stainless steel. Mater Sci Eng A. 2006;415(1–2):104–17.

    Article  Google Scholar 

  37. Luo YR, Wang QY, Liu YJ, Huang CX. Low cycle fatigue properties of steel structure materials Q235 and Q345. J Sichuan Univ. 2012;44(2):169–75 (in Chinese).

    Google Scholar 

  38. Han QH, Wang PP, Lu Y. Low-cycle multiaxial fatigue behavior and life prediction of Q235B steel welded material. Int J Fatigue. 2019;127:417–30.

    Article  Google Scholar 

  39. Hawryluk M, Dolny A, Mroziński S. Low cycle fatigue studies of WCLV steel (1.2344) used for forging tools to work at higher temperatures. Arch Civ Mech Eng. 2018;18(2):465–78.

    Article  Google Scholar 

  40. Navarro A. An unconditionally convergent iterative algorithm for the intersection of Neuber’s and Molski–Glinka’s rules with the Ramberg-Osgood stress-strain relationship. Theor Appl Fract Mech. 2014;69:53–62.

    Article  Google Scholar 

  41. DS Simulia Corp. Abaqus/CAE User’s Guide. Dassault Systèmes (DS) Simulia Corp., RI, USA, 2014.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51525803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Wang, Y., Yin, Y. et al. Fatigue tests on notched specimens of G20Mn5QT cast steel and life prediction by a new strain-based method. Archiv.Civ.Mech.Eng 20, 113 (2020). https://doi.org/10.1007/s43452-020-00114-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00114-1

Keywords

Navigation