Skip to main content
Log in

CYP2C19 gene polymorphism in Ningxia

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Poor metabolizer (PM) status of CYP2C19 can be a predisposing factor for developing gastric cancer in H. pylori-infected patients. It is unclear whether PM status of CYP2C19 can also be a potential factor for H.pylori infection in healthy people.

Methods

We used high-throughput sequencing to detect single nucleotide polymorphisms (SNPs) at just three loci, rs4244285 (CYP2C19*2), rs4986893 (CYP2C19*3) and rs12248560 (CYP2C19*17), to identify the exact CYP2C19 alleles corresponding to the mutated sites. We determined CYP2C19 genotypes of 1050 subjects from 5 cities of Ningxia from September 2019 to September 2020 and evaluated the potential correlation between H.pylori and CYP2C19 gene polymorphisms. Clinical data were analyzed using χ2 tests.

Results

The frequency of CYP2C19*17 in Hui (3.7%) was higher as compared to Han (1.4%) in Ningxia (p = 0.001). The frequency of CYP2C19*1/*17 of Hui (4.7%) was higher as compared to Han (1.6%) in Ningxia (p = 0.004). The frequency of CYP2C19*3/*17 of Hui (1%) was higher as compared to Han (0%) in Ningxia (p = 0.023). The frequencies of alleles (p = 0.142) and genotypes (p = 0.928) were not found to be significantly different among the different BMI groups. The frequencies of four alleles between H. pylori positive and negative groups were not found to be statistically different (p = 0.794). The frequencies of the different genotypes between H. pylori positive and negative groups were not statistically different (p = 0.974), and no statistical difference was observed between the different metabolic phenotypes (p = 0.494).

Conclusion

There were regional differences observed in CYP2C19*17 distribution in Ningxia. The frequency of CYP2C19*17 in Hui was higher than in Han of Ningxia. No significant relationship was found between CYP2C19 gene polymorphism and susceptibility to H. pylori infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

CPIC:

Clinical pharmacogenetics implementation consortium

CI:

Confidence interval

GERD:

Gastroesophageal reflux disease

HP:

Helicobacter pylori

IM:

Intermediate metabolizers

NM:

Normal metabolizers

PCR:

Polymerase chain reaction

PharmGKB:

Pharmacogenetics and pharmacogenomics knowledge base

PM:

Poor metabolizers

PPIs:

Proton pump inhibitors

RM:

Rapid metabolizers

SNP:

Single nucleotide polymorphism

UM:

Ultrarapid metabolizers

References

  1. Velmovitsky PE, Bevilacqua T, Alencar P, Cowan D, Morita PP. Convergence of Precision Medicine and Public Health Into Precision Public Health: Toward a Big Data Perspective. Front Public Health. 2021;9:561873.

  2. Döhner H, Wei AH, Löwenberg B. Towards precision medicine for AML. Nat Rev Clin Oncol. 2021;18(9):577–90.

    Article  PubMed  Google Scholar 

  3. Weldy CS, Ashley EA. Towards precision medicine in heart failure. Nat Rev Cardiol. 2021;18(11):745–62.

    Article  PubMed  Google Scholar 

  4. Ahmad T, Valentovic MA, Rankin GO. Effects of cytochrome P450 single nucleotide polymorphisms on methadone metabolism and pharmacodynamics. Biochem Pharmacol. 2018;153:196–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stajnko A, Runkel AA, Kosjek T, Snoj Tratnik J, Mazej D, Falnoga I, et al. Assessment of susceptibility to phthalate and DINCH exposure through CYP and UGT single nucleotide polymorphisms. Environ Int. 2022;159: 107046.

    Article  CAS  PubMed  Google Scholar 

  6. Gao B, Tan T, Cao X, Pan M, Yang C, Wang J, et al. Relationship of cytochrome P450 gene polymorphisms with blood concentrations of hydroxychloroquine and its metabolites and adverse drug reactions. BMC Med Genom. 2022;15(1):23.

    Article  CAS  Google Scholar 

  7. Sapone A, Vaira D, Trespidi S, Perna F, Gatta L, Tampieri A, et al. The clinical role of cytochrome p450 genotypes in Helicobacter pylori management. Am J Gastroenterol. 2003;98(5):1010–5.

    Article  CAS  PubMed  Google Scholar 

  8. Ozdil B, Akkiz H, Bayram S, Bekar A, Akgöllü E, Sandikçi M. Influence of CYP2C19 functional polymorphism on Helicobacter pylori eradication. Turk J Gastroenterol. 2010;21(1):23–8.

    Article  PubMed  Google Scholar 

  9. Kurzawski M, Gawrońska-Szklarz B, Wrześniewska J, Siuda A, Starzyńska T, Droździk M. Effect of CYP2C19*17 gene variant on Helicobacter pylori eradication in peptic ulcer patients. Eur J Clin Pharmacol. 2006;62(10):877–80.

    Article  CAS  PubMed  Google Scholar 

  10. Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302(8):849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yuan XW, Yuan SY, Wu GX, Wu ZX, Guan ZY. Genetic polymorphism of clopidogrel metabolism related gene CYP2C19 gene in Chinese from Foshan area of Guangdong Province. Hematology. 2022;27(1):1056–61.

    Article  PubMed  Google Scholar 

  12. Zhang YD, Dong QW, Zhang SH, Gu F, Zhang Y, Song HB, et al. Effectiveness of eradication regimen based on the bacterial susceptibility and CYP2C19 genotype in children with refractory Helicobacter pylori infection. Zhonghua Er Ke Za Zhi. 2020;58(1):41–5 (Chinese).

    CAS  PubMed  Google Scholar 

  13. Ima JJ, Thomas CD, Barbarino J, Desta Z, Van Driest SL, El Rouby N, et al. Clinical pharmacogenetics implementation consortium (CPIC) Guideline for CYP2C19 and proton pump inhibitor dosing. Clin Pharmacol Ther. 2021;109(6):1417–23.

    Article  Google Scholar 

  14. Wang P, Feng SB, Jin Y. CYP2C19 gene polymorphism and susceptibility to gastric cancer after helicobacter pylori infection. Chinese J Nosocomiol. 2020;30(2):170–3.

    Google Scholar 

  15. Tong TG, Zhang RL, Fu GF. The distribution characteristics of CYP2C19 gene polymorphism in Hp positive gastric cancer patients. Modern Diag Treat. 2017;28(11):2116–7.

    CAS  Google Scholar 

  16. Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and dutch pharmacogenetics Working group. Clin Transl Sci. 2020;13(1):116–24.

    Article  PubMed  Google Scholar 

  17. PharmGKB. CYP2C19 clinical annotations. 2021. https://www.pharmgkb.org/gene/PA124/clinicalAnnotation.

  18. PharmGKB. Drug Label Information and Legend. 2020. https://www.pharmgkb.org/.

  19. CPIC® Guideline for Clopidogrel and CYP2C19. 2020. https://cpicpgx.org/guidelines/guideline-for-clopidogrel-and-cyp2c19.

  20. Zhong Z, Hou J, Li B, Zhang Q, Liu S, Li C, et al. Analysis of CYP2C19 genetic polymorphism in a large ethnic hakka population in Southern China. Med Sci Monit. 2017;23:6186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He N, Yan FX, Huang SL, Wang W, Xiao ZS, Liu ZQ, et al. CYP2C19 genotype and S-mephenytoin 4’-hydroxylation phenotype in a Chinese Dai population. Eur J Clin Pharmacol. 2002;58(1):15–8.

    Article  CAS  PubMed  Google Scholar 

  22. Jin T, Zhang X, Geng T, Shi X, Wang L, Yuan D, et al. Genotype-phenotype analysis of CYP2C19 in the Tibetan population and its potential clinical implications in drug therapy. Mol Med Rep. 2016;13(3):2117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding Y, Xu D, Zhang X, Yang H, Geng T, He P, et al. Genetic polymorphisms and phenotypic analysis of drug-metabolizing enzyme CYP2C19 in a Li Chinese population. Int J Clin Exp Pathol. 2015;8(10):13201–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zuo LJ, Guo T, Xia DY, Jia LH. Allele and genotype frequencies of CYP3A4, CYP2C19, and CYP2D6 in Han, Uighur, Hui, and Mongolian Chinese populations. Genet Test Mol Biomarkers. 2012;16(2):102–8.

    Article  CAS  PubMed  Google Scholar 

  25. Roh HK, Dahl ML, Tybring G, Yamada H, Cha YN, Bertilsson L. CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics. 1996;6(6):547–51.

    Article  CAS  PubMed  Google Scholar 

  26. Kubota T, Chiba K, Ishizaki T. Genotyping of S-mephenytoin 4’-hydroxylation in an extended Japanese population. Clin Pharmacol Ther. 1996;60(6):661–6.

    Article  CAS  PubMed  Google Scholar 

  27. Yamada S, Onda M, Kato S, Matsuda N, Matsuhisa T, Yamada N, et al. Genetic differences in CYP2C19 single nucleotide polymorphisms among four Asian populations. J Gastroenterol. 2001;36(10):669–72.

    Article  CAS  PubMed  Google Scholar 

  28. Sukasem C, Tunthong R, Chamnanphon M, Santon S, Jantararoungtong T, Koomdee N, et al. CYP2C19 polymorphisms in the Thai population and the clinical response to clopidogrel in patients with atherothrombotic-risk factors. Pharmgenom Pers Med. 2013;6:85–91.

    CAS  Google Scholar 

  29. Pang YS, Wong LP, Lee TC, Mustafa AM, Mohamed Z, Lang CC. Genetic polymorphism of cytochrome P450 2C19 in healthy Malaysian subjects. Br J Clin Pharmacol. 2004;58:332–5.

    Article  CAS  PubMed  Google Scholar 

  30. Chang M, Dahl ML, Tybring G, Gotharson E, Bertilsson L. Use of omeprazole as a probe drug for CYP2C19 phenotype in Swedish Cau-casians: comparison with S-mephenytoin hy-droxylation phenotype and CYP2C19 genotype. Pharmacogenetics. 1995;5:358–63.

    Article  CAS  PubMed  Google Scholar 

  31. Scordo MG, Caputi AP, D’Arrigo C, Fava G, Spina E. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res. 2004;50:195–200.

    Article  CAS  PubMed  Google Scholar 

  32. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, Brockmöller J, Frötschl R, Köpke K, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol. 2003;59:303–12.

    Article  CAS  PubMed  Google Scholar 

  33. Bravo-Villalta HV, Yamamoto K, Nakamura K, Bayá A, Okada Y, Horiuchi R. Genetic polymor-phism of CYP2C9 and CYP2C19 in a Bolivian population: An investigative and comparative study. Eur J Clin Pharmacol. 2005;61:179–84.

    Article  CAS  PubMed  Google Scholar 

  34. Halling J, Petersen MS, Damkier P, Nielsen F, Grandjean P, Weihe P, et al. Polymorphism of CYP2D6, CYP2C19, CYP2C9 and CYP2C8 in the Faroese population. Eur J Clin Pharmacol. 2005;61:491–7.

    Article  CAS  PubMed  Google Scholar 

  35. Favela-Mendoza AF, Martinez-Cortes G, Hernandez-Zaragoza M, Salazar-Flores J, Muñoz-Valle JF, Martinez-Sevilla VM, et al. Genetic variability of CYP2C19 in a Mexican population: Contribution to the knowl-edge of the inheritance pattern of CYP2C19*17 to develop the ultrarapid metabolizer phenotype. J Genet. 2015;94:1–5.

    Article  Google Scholar 

  36. Aynacioglu AS, Sachse C, Bozkurt A, Kortunay S, Nacak M, Schröder T, et al. Low frequency of defec-tive alleles of cytochrome P450 enzymes 2C19 and 2D6 in the Turkish pop-ulation. Clin Pharmacol Ther. 1999;66:185–92.

    Article  CAS  PubMed  Google Scholar 

  37. Herrlin K, Massele AY, Jande M, Alm C, Tybring G, Abdi YA, et al. Bantu Tanzanians have a decreased capacity to metabolize omeprazole and mephenytoin in relation to their CYP2C19 genotype. Clin Pharmacol Ther. 1998;64:391–401.

    Article  CAS  PubMed  Google Scholar 

  38. Persson I, Aklillu E, Rodrigues F, Bertilsson L, Ingelman-Sundberg M. S-mephenytoin hy-droxylation phenotype and CYP2C19 genotype among Ethiopians. Pharmacogenetics. 1996;6:521–6.

    Article  CAS  PubMed  Google Scholar 

  39. Masimirembwa C, Bertilsson L, Johansson I, Hasler JA, Ingelman-Sundberg M. Pheno-typing and genotyping of S-mephenytoin hy-droxylase (cytochrome P450 2C19) in a Shona population of Zimbabwe. Clin Pharmacol Ther. 1995;57:656–61.

    Article  CAS  PubMed  Google Scholar 

  40. Chen L, Qin S, Xie J, Tang J, Yang L, Shen W, et al. Genetic poly-morphism analysis of CYP2C19 in Chinese Han populations from different geographic ar-eas of mainland China. Pharmacogenomics. 2008;9:691–702.

    Article  CAS  PubMed  Google Scholar 

  41. Ota T, Kamada Y, Hayashida M, Iwao-Koizumi K, Murata S, Kinoshita K. Combination analysis in genetic polymorphisms of drug-me-tabolizing enzymes CYP1A2, CYP2C9, CY-P2C19, CYP2D6 and CYP3A5 in the Japanese population. Int J Med Sci. 2015;12:78–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Petrović J, Pešić V, Lauschke VM. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet. 2020;28(1):88–94.

    Article  PubMed  Google Scholar 

  43. Biswas M. Global distribution of CYP2C19 risk phenotypes affecting safety and effectiveness of medications. Pharmacogenomics J. 2021;21(2):190–9.

    Article  CAS  PubMed  Google Scholar 

  44. Martin J, Williams AK, Klein MD, Sriramoju VB, Madan S, Rossi JS, et al. Frequency and clinical outcomes of CYP2C19 genotype-guided escalation and de-escalation of antiplatelet therapy in a real-world clinical setting. Genet Med. 2020;22(1):160–9.

    Article  CAS  PubMed  Google Scholar 

  45. Goljan E, Abouelhoda M, ElKalioby MM, Jabaan A, Alghithi N, Meyer BF, et al. Identification of pharmacogenetic variants from large scale next generation sequencing data in the Saudi population. PLoS ONE. 2022;17(1): e0263137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu MHC, Chan MCY, Chung CCY, Li AWT, Yip CYW, Mak CCY, et al. Actionable pharmacogenetic variants in Hong Kong Chinese exome sequencing data and projected prescription impact in the Hong Kong population. PLoS Genet. 2021;17(2): e1009323.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tian J, Zhang J, Yang Z, Feng S, Li S, Ren S, et al. Genetic epidemiology of medication safety and efficacy related variants in the central Han Chinese population with whole genome sequencing. Front Pharmacol. 2022;12: 790832.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Musumba CO, Jorgensen A, Sutton L, Van Eker D, Zhang E, O’Hara N, et al. CYP2C19*17gain-of-function polymorphism is associated with peptic ulcer disease. Clin Pharmacol Ther. 2013;93(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  49. Jainan W, Vilaichone RK. Effects of the CYP2C19 genetic polymorphism on gastritis, peptic ulcer disease, peptic ulcer bleeding and gastric cancer. Asian Pac J Cancer Prev. 2014;15(24):10957–60.

    Article  PubMed  Google Scholar 

  50. Sanford JC, Guo Y, Sadee W, Wang D. Regulatory polymorphisms in CYP2C19 affecting hepatic expression. Drug Metabol Drug Interact. 2013;28(1):23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Negovan Anca, Iancu Mihaela, Moldovan Valeriu, Pantea Monica, Sarkany Kinga, Bataga Simona, et al. Influence of MDR1 C3435T, CYP2C19*2 and CYP2C19*3 gene polymorphisms and clinical characteristics on the severity of gastric lesions: a case-control study. J Gastrointest Liver Dis JGLD.2016; 25(2):258–60.

  52. Wang H, Song K, Chen Z, Yu Y. Poor metabolizers at the cytochrome P450 2C19 loci is at increased risk of developing cancer in Asian populations. PLoS ONE. 2013;8(8): e73126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kappers WA, Edwards RJ, Murray S, Boobis AR. Diazinon is activated by CYP2C19 in human liver. Toxicol Appl Pharmacol. 2001;177(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki S, Muroishi Y, Nakanishi I, Oda Y. Relationship between genetic polymorphisms of drug-metabolizing enzymes (CYP1A1, CYP2E1, GSTM1, and NAT2), drinking habits, histological subtypes, and p53 gene point mutations in Japanese patients with gastric cancer. J Gastroenterol. 2004;39(3):220–30.

    Article  CAS  PubMed  Google Scholar 

  55. Sugimoto M, Furuta T, Shirai N, Nakamura A, Kajimura M, Sugimura H, et al. Poor metabolizer genotype status of CYP2C19 is a risk factor for developing gastric cancer in Japanese patients with Helicobacter pylori infection. Aliment Pharmacol Ther. 2005;22(10):1033–40.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang X R, Zhang Y G, Lu J, et al. Analysis of CYP2C19 gene polymorphisms in gastrointestinal diseases among Han Chinese in northern China[J]. J Clin Experim Pathol. 2016;32(10):1101–1104,1109.

  57. Lirong Mo. Investigation of the current status of Helicobacter pylori infection in the population of Wuzhong City. Ningxia and analysis of related factor: Ningxia Medical University; 2019.

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by Hainan Province Clinical Medical Center (No. 2021818)、the specific research fund of The Innovation Platform for Academicians of Hainan Province (No. 2022136), Hainan Provincial Health Industry Research Project (22A200078) and Hainan Provincial Postgraduate Innovation Research Project (Qhyb2022-133).

Author information

Authors and Affiliations

Authors

Contributions

ZY and FH-B participated in the design of this study. YQ-X and DY-Z supervised research. Y Z and XM-L performed research. Y Z, XM-L, RX-C, XD-Z, and SJ-C analyzed data. ZY, YQ-X, DY-Z, and FH-B drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Feihu Bai.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The protocol was approved in advance by the Human Institutional Review Board of the Outdo China Center for H. pylori Molecular Medicine (YB M-05-01) and performed per Helsinki's Declaration. All participants provided written informed consent for data collection and storage.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xie, Y., Zhang, D. et al. CYP2C19 gene polymorphism in Ningxia. Pharmacol. Rep 75, 705–714 (2023). https://doi.org/10.1007/s43440-023-00473-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00473-5

Keywords

Navigation