Skip to main content
Log in

Pentylenetetrazole preconditioning attenuates severity of status epilepticus induced by lithium-pilocarpine in male rats: evaluation of opioid/NMDA receptors and nitric oxide pathway

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Non-deleterious episodes of seizure preconditioning can efficiently increase the brain’s resistance to the consequent severe status epilepticus (SE). In the present investigation, we intended to elucidate further (i) the effects of preconditioning with pentylenetetrazole (PTZ) in the lithium-pilocarpine model of SE in male rats, along with (ii) the possible contribution of opioid, N-Methyl-D-aspartate (NMDA) receptors, and nitric oxide (NO) signaling transduction.

Methods

In male Wistar rats, the SE was incited by lithium administration (127 mg/kg, ip) 20 h before pilocarpine (60 mg/kg, ip). PTZ preconditioning was induced via a low-dose injection of PTZ (25 mg/kg) for 5 repeated days. To investigate the underlying signaling pathway, naltrexone (NTX; a non-specific opioid receptor antagonist), MK-801 (NMDA antagonist), L-NAME (a non-specific nitric oxide synthase (NOS) inhibitor), aminoguanidine (AG; a specific inducible NOS inhibitor), and 7-Nitroindazole (7-NI; a specific neuronal NOS inhibitor) were administered 15 min before PTZ injection.

Results

Preconditioning with PTZ successfully ameliorates the increased SE scores due to lithium-pilocarpine-induced SE (p < 0.05). None of the drugs given without PTZ preconditioning had an impact on SE outcomes. The observed anti-convulsant effect of PTZ preconditioning is reversed by the opioid receptor antagonists and NOS inhibitors. Conversely, the NMDA receptor antagonist enhanced the anti-convulsion activity caused by PTZ preconditioning. Quantifying nitrite level in the hippocampus showed a significant NO level decline in the PTZ-preconditioned animals.

Conclusions

Therefore, PTZ preconditioning generates endogenous protection against SE, possibly through targeting opioid/NMDA receptors and NO signaling transduction in the animal model of lithium-pilocarpine-induced SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data were generated in-house, and no paper mill or other ways of manipulating research materials were used. All data generated or analyzed during this study are included in this published article and its supplementary material S1 (SE scores and biochemical measurements) and S2 (mortality rate). The Prism files, including the data analysis and figures, are available in supplementary material S3–S5.

Abbreviations

AG:

Aminoguanidine

ANOVA:

Analysis of variance

Ca2 + :

Calcium

EEG:

Electroencephalographic

eNOS:

Endothelial nitric oxide synthase

FSH:

Follicle-stimulating hormone

GABA:

Gamma-aminobutyric acid

iNOS:

Inducible nitric oxide synthase

ip:

Intraperitoneal

KA:

Kainic acid

LH:

Luteinizing hormone

L-NAME:

L-NG-Nitro-Larginine methyl ester hydrochloride

NIH:

National Institutes of Health

NMDA:

N-Methyl-D-aspartate

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NTX:

Naltrexone

OD:

Optical density

PCOS:

Polycystic ovary syndrome

PTZ:

Pentylenetetrazole

SD:

Standard deviation

SE:

Status epilepticus

7-NI:

7-Nitroindazole

References

  1. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8:398–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dirnagl U, Meisel A. Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning? Neuropharmacology. 2008;55:334–44.

    Article  CAS  PubMed  Google Scholar 

  3. McDonough A, Weinstein JR. Neuroimmune response in ischemic preconditioning. Neurotherapeutics. 2016;13:748–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stevens SL, Vartanian KB, Stenzel-Poore MP. Reprogramming the response to stroke by preconditioning. Stroke. 2014;45:2527–31.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eslami F, Rahimi N, Ostovaneh A, Ghasemi M, Dejban P, Abbasi A, et al. Sumatriptan reduces severity of status epilepticus induced by lithium-pilocarpine through nitrergic transmission and 5-HT(1B/D) receptors in rats: a pharmacological-based evidence. Fundam Clin Pharmacol. 2021;35:131–40. https://doi.org/10.1111/fcp.12590.

    Article  CAS  PubMed  Google Scholar 

  6. Lv R-J, Wang Q, Cui T, Zhu F, Shao X-Q. Status epilepticus-related etiology, incidence and mortality: a meta-analysis. Epilepsy Res. 2017;136:12–7.

    Article  PubMed  Google Scholar 

  7. Faghir-Ghanesefat H, Keshavarz-Bahaghighat H, Rajai N, Mokhtari T, Bahramnejad E, Roodsari SK, et al. The possible role of nitric oxide pathway in pentylenetetrazole preconditioning against seizure in mice. J Mol Neurosci. 2019;67:477–83.

    Article  CAS  PubMed  Google Scholar 

  8. Andre V, Ferrandon A, Marescaux C, Nehlig A. The lesional and epileptogenic consequences of lithium–pilocarpine-induced status epilepticus are affected by previous exposure to isolated seizures: effects of amygdala kindling and maximal electroshocks. Neuroscience. 2000;99:469–81.

    Article  CAS  PubMed  Google Scholar 

  9. Najm IM, Hadam J, Ckakraverty D, Mikuni N, Penrod C, Sopa C, et al. A short episode of seizure activity protects from status epilepticus-induced neuronal damage in rat brain. Brain Res. 1998;810:72–5.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Cui S-S, Wallace AE, Hannesson DK, Schmued LC, Saucier DM, et al. Relations between brain pathology and temporal lobe epilepsy. J Neurosci. 2002;22:6052–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jimenez-Mateos EM, Hatazaki S, Johnson MB, Bellver-Estelles C, Mouri G, Bonner C, et al. Hippocampal transcriptome after status epilepticus in mice rendered seizure damage-tolerant by epileptic preconditioning features suppressed calcium and neuronal excitability pathways. Neurobiol Dis. 2008;32:442–53.

    Article  CAS  PubMed  Google Scholar 

  12. Wasterlain CG, Baxter CF, Baldwin RA. GABA metabolism in the substantia nigra, cortex, and hippocampus during status epilepticus. Neurochem Res. 1993;18:527–32.

    Article  CAS  PubMed  Google Scholar 

  13. Hassanipour M, Shirzadian A, Boojar MM-A, Abkhoo A, Abkhoo A, Delazar S, et al. Possible involvement of nitrergic and opioidergic systems in the modulatory effect of acute chloroquine treatment on pentylenetetrazol induced convulsions in mice. Brain Res Bull. 2016;121:124–30.

    Article  CAS  PubMed  Google Scholar 

  14. Youssef FF, Addae JI, Stone TW. NMDA-induced preconditioning attenuates synaptic plasticity in the rat hippocampus. Brain Res. 2006;1073:183–9.

    Article  PubMed  CAS  Google Scholar 

  15. Deryagin OG, Gavrilova SA, Gainutdinov KL, Golubeva AV, Andrianov VV, Yafarova GG, et al. Molecular bases of brain preconditioning. Front Neurosci. 2017;11:427.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shafaroodi H, Khosravani E, Fakhrzad A, Moezi L. The interaction between morphine and propranolol in chemical and electrical seizure models of mice. Neurol Res. 2016;38:166–76.

    Article  PubMed  CAS  Google Scholar 

  17. Saboory E, Gholami M, Zare S, Roshan-Milani S. The long-term effects of neonatal morphine administration on the pentylenetetrazol seizure model in rats: the role of hippocampal cholinergic receptors in adulthood. Dev Psychobiol. 2014;56:498–509.

    Article  CAS  PubMed  Google Scholar 

  18. Rubaj A, Gustaw K, Zgodziński W, Kleinrok Z, Sieklucka-Dziuba M. The role of opioid receptors in hypoxic preconditioning against seizures in brain. Pharmacol Biochem Behav. 2000;67:65–70.

    Article  CAS  PubMed  Google Scholar 

  19. Kohl B, Dannhardt G. The NMDA receptor complex: a promising target for novel antiepileptic strategies. Curr Med Chem. 2001;8:1275–89.

    Article  CAS  PubMed  Google Scholar 

  20. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37.

    Article  PubMed  CAS  Google Scholar 

  21. Marini A, Jiang X, Wu X, Pan H, Guo Z, Mattson M, et al. Preconditioning and neurotrophins: a model for brain adaptation to seizures, ischemia and other stressful stimuli. Amino Acids. 2007;32:299–304.

    Article  CAS  PubMed  Google Scholar 

  22. Corasaniti MT, Maiuolo J, Maida S, Fratto V, Navarra M, Russo R, et al. Cell signaling pathways in the mechanisms of neuroprotection afforded by bergamot essential oil against NMDA-induced cell death in vitro. Br J Pharmacol. 2007;151:518–29. https://doi.org/10.1038/sj.bjp.0707237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Severino PC, Muller GdAS, Vandresen-Filho S, Tasca CI. Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Life Sci. 2011;89:570–6.

    Article  CAS  PubMed  Google Scholar 

  24. Vandresen-Filho S, Hoeller AA, Herculano BA, Duzzioni M, Duarte FS, Piermartiri TC, et al. NMDA preconditioning attenuates cortical and hippocampal seizures induced by intracerebroventricular quinolinic acid infusion. Neurotox Res. 2013;24:55–62.

    Article  CAS  PubMed  Google Scholar 

  25. Rejdak K, Rejdak R, Kleinrok Z, Sieklucka-Dziuba M. The influence of MK-801 on bicuculline evoked seizures in adult mice exposed to transient episode of brain ischemia. J Neural Transm (Vienna). 2000;107:947–57. https://doi.org/10.1007/s007020070044.

    Article  CAS  Google Scholar 

  26. Zaitsev AV, Kim K, Vasilev DS, Lukomskaya NY, Lavrentyeva VV, Tumanova NL, et al. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J Neurosci Res. 2015;93:454–65. https://doi.org/10.1002/jnr.23500.

    Article  CAS  PubMed  Google Scholar 

  27. Rejdak R, Rejdak K, Sieklucka-Dziuba M, Stelmasiak Z, Grieb P. Brain tolerance and preconditioning. Pol J Pharmacol. 2001;53:73–80.

    CAS  PubMed  Google Scholar 

  28. Dejban P, Eslami F, Rahimi N, Takzare N, Jahansouz M, Dehpour AR. Involvement of nitric oxide pathway in the anti-inflammatory effect of modafinil on indomethacin, stress, and ethanol-induced gastric mucosal injury in rat. Eur J Pharmacol. 2020;887: 173579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kazemi Roodsari S, Bahramnejad E, Rahimi N, Aghaei I, Dehpour AR. Methadone’s effects on pentylenetetrazole-induced seizure threshold in mice: NMDA/opioid receptors and nitric oxide signaling. Ann N Y Acad Sci. 2019;1449:25–35.

    CAS  PubMed  Google Scholar 

  30. Zamanian G, Shayan M, Rahimi N, Bahremand T, Shafaroodi H, Ejtemaei-Mehr S, et al. Interaction of morphine tolerance with pentylenetetrazole-induced seizure threshold in mice: the role of NMDA-receptor/no pathway. Epilepsy Behav. 2020;112: 107343. https://doi.org/10.1016/j.yebeh.2020.107343.

    Article  PubMed  Google Scholar 

  31. Centeno JM, Orti M, Salom JB, Sick TJ, Pérez-Pinzón MA. Nitric oxide is involved in anoxic preconditioning neuroprotection in rat hippocampal slices. Brain Res. 1999;836:62–9.

    Article  CAS  PubMed  Google Scholar 

  32. Racine RJ. Modification of seizure activity by electrical stimulation. II Motor seizure Electroencephalogr Clin Neurophysiol. 1972;32:281–94. https://doi.org/10.1016/0013-4694(72)90177-0.

    Article  CAS  PubMed  Google Scholar 

  33. Wang M, Deng X, Xie Y, Chen Y. Astaxanthin attenuates neuroinflammation in status epilepticus rats by regulating the ATP-P2X7R signal. Drug Des Devel Ther. 2020;14:1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amanlou A, Eslami F, Shayan M, Mortazavi P, Dehpour AR. Anticonvulsive evaluation and histopathological survey of thalidomide synthetic analogs on lithium-pilocarpine-induced status epilepticus in rats. Res Pharm Sci. 2021;16:586–95. https://doi.org/10.4103/1735-5362.327505.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Do Val-da Silva RA, Peixoto-Santos JE, Scandiuzzi RC, Balista PA, Bassi M, Glass ML, et al. Decreased neuron loss and memory dysfunction in pilocarpine-treated rats pre-exposed to hypoxia. Neuroscience. 2016;332:88–100.

    Article  CAS  PubMed  Google Scholar 

  36. André V, Ferrandon A, Marescaux C, Nehlig A. The lesional and epileptogenic consequences of lithium-pilocarpine-induced status epilepticus are affected by previous exposure to isolated seizures: effects of amygdala kindling and maximal electroshocks. Neuroscience. 2000;99:469–81. https://doi.org/10.1016/s0306-4522(00)00209-8.

    Article  PubMed  Google Scholar 

  37. Leré C, El Bahh B, La Salle GLG, Rougier A. A model of ‘epileptic tolerance’for investigating neuroprotection, epileptic susceptibility and gene expression-related plastic changes. Brain Res Protoc. 2002;9:49–56. https://doi.org/10.1016/s1385-299x(01)00136-2.

    Article  Google Scholar 

  38. Jimenez-Mateos EM, Henshall DC. Seizure preconditioning and epileptic tolerance: models and mechanisms. Int J Physiol Pathophysiol Pharmacol. 2009;1:180–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Amini E, Rezaei M, Ibrahim NM, Golpich M, Ghasemi R, Mohamed Z, et al. A molecular approach to epilepsy management: from current therapeutic methods to preconditioning efforts. Mol Neurobiol. 2015;52:492–513.

    Article  CAS  PubMed  Google Scholar 

  40. Trinka E, Cock H, Hesdorffer D, Rossetti AO, Scheffer IE, Shinnar S, et al. A definition and classification of status epilepticus—Report of the ILAE task force on classification of status epilepticus. Epilepsia. 2015;56:1515–23. https://doi.org/10.1111/epi.13121.

    Article  PubMed  Google Scholar 

  41. Acharya MM, Hattiangady B, Shetty AK. Progress in neuroprotective strategies for preventing epilepsy. Prog Neurobiol. 2008;84:363–404.

    Article  CAS  PubMed  Google Scholar 

  42. Jung K-Y, Kim J-M, Kim DW. Nonlinear dynamic characteristics of electroencephalography in a high-dose pilocarpine-induced status epilepticus model. Epilepsy Res. 2003;54:179–88.

    Article  PubMed  Google Scholar 

  43. Rubaj A, Zgodziński W, Sieklucka-Dziuba M. The epileptogenic effect of seizures induced by hypoxia: the role of NMDA and AMPA/KA antagonists. Pharmacol Biochem Behav. 2003;74:303–11.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z, et al. Neuronal nitric oxide synthase contributes to PTZ kindling epilepsy-induced hippocampal endoplasmic reticulum stress and oxidative damage. Front Cell Neurosci. 2017;11:377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gross A, Benninger F, Madar R, Illouz T, Griffioen K, Steiner I, et al. Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice. Epilepsia. 2017;58:586–96. https://doi.org/10.1111/epi.13688.

    Article  CAS  PubMed  Google Scholar 

  46. Fu L, Liu K, Wake H, Teshigawara K, Yoshino T, Takahashi H, et al. Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Sci Rep. 2017;7:1179. https://doi.org/10.1038/s41598-017-01325-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Curia G, Longo D, Biagini G, Jones RS, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008;172:143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Serra M, Dazzi L, Cagetti E, Chessa MF, Pisu MG, Sanna A, et al. Effect of pentylenetetrazole-induced kindling on acetylcholine release in the hippocampus of freely moving rats. J Neurochem. 1997;68:313–8.

    Article  CAS  PubMed  Google Scholar 

  49. Petroff OA, Rothman DL, Behar KL, Mattson RH. Low brain GABA level is associated with poor seizure control. Ann Neurol. 1996;40:908–11. https://doi.org/10.1002/ana.410400613.

    Article  CAS  PubMed  Google Scholar 

  50. Villalpando-Vargas F, Medina-Ceja L. Effect of sparteine on status epilepticus induced in rats by pentylenetetrazole, pilocarpine and kainic acid. Brain Res. 2015;1624:59–70.

    Article  CAS  PubMed  Google Scholar 

  51. Meskinimood S, Rahimi N, Faghir-Ghanesefat H, Gholami M, Sharifzadeh M, Dehpour AR. Modulatory effect of opioid ligands on status epilepticus and the role of nitric oxide pathway. Epilepsy Behav. 2019;101: 106563.

    Article  PubMed  Google Scholar 

  52. Stumm RK, Zhou C, Schulz S, Höllt V. Neuronal types expressing mu- and delta-opioid receptor mRNA in the rat hippocampal formation. J Comp Neurol. 2004;469:107–18. https://doi.org/10.1002/cne.10997.

    Article  CAS  PubMed  Google Scholar 

  53. Fathalizade F, Baghani M, Khakpai F, Fazli-Tabaei S, Zarrindast MR. GABA-ergic agents modulated the effects of histamine on the behaviour of male mice in the elevated plus maze test. Exp Physiol. 2022;107:233–42. https://doi.org/10.1113/ep090060.

    Article  CAS  PubMed  Google Scholar 

  54. Kim YS, Yoon BE. Altered GABAergic signaling in brain disease at various stages of life. Exp Neurobiol. 2017;26:122–31. https://doi.org/10.5607/en.2017.26.3.122.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ormandy GC, Jope RS, Snead OC. Anticonvulsant actions of MK-801 on the lithium-pilocarpine model of status epilepticus in rats. Exp Neurol. 1989;106:172–80. https://doi.org/10.1016/0014-4886(89)90091-5.

    Article  CAS  PubMed  Google Scholar 

  56. Morris PJ, Burke RD, Sharma AK, Lynch DC, Lemke-Boutcher LE, Mathew S, et al. A comparison of the pharmacokinetics and NMDAR antagonism-associated neurotoxicity of ketamine, (2R,6R)-hydroxynorketamine and MK-801. Neurotoxicol Teratol. 2021;87: 106993. https://doi.org/10.1016/j.ntt.2021.106993.

    Article  CAS  PubMed  Google Scholar 

  57. Rahimi N, Modabberi S, Faghir-Ghanesefat H, Shayan M, Farzad Maroufi S, Asgari Dafe E, et al. The possible role of nitric oxide signaling and NMDA receptors in allopurinol effect on maximal electroshock- and pentylenetetrazol-induced seizures in mice. Neurosci Lett. 2022;778: 136620. https://doi.org/10.1016/j.neulet.2022.136620.

    Article  CAS  PubMed  Google Scholar 

  58. Hanada T. Ionotropic glutamate receptors in epilepsy: a review focusing on ampa and nmda receptors. Biomolecules. 2020. https://doi.org/10.3390/biom10030464.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Abdelsameea AA. Effect of verapamil, cinnarizine and memantine on maximal electroshock, picrotoxin, and pilocarpine-induced seizure models in albino mice. Egypt J Basic Clin Pharmacol. 2015;5:11–8. https://doi.org/10.11131/2015/101356.

    Article  Google Scholar 

  60. Krug M, Becker A, Grecksch G, Pfeiffer A, Matthies R, Wagner M. Effects of anticonvulsive drugs on pentylenetetrazol kindling and long-term potentiation in freely moving rats. Eur J Pharmacol. 1998;356:179–87.

    Article  CAS  PubMed  Google Scholar 

  61. Boeck CR, Ganzella M, Lottermann A, Vendite D. NMDA preconditioning protects against seizures and hippocampal neurotoxicity induced by quinolinic acid in mice. Epilepsia. 2004;45:745–50.

    Article  CAS  PubMed  Google Scholar 

  62. Mark LP, Prost RW, Ulmer JL, Smith MM, Daniels DL, Strottmann JM, et al. Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. Am J Neuroradiol. 2001;22:1813–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Milatovic D, Gupta RC, Dettbarn W-D. Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res. 2002;957:330–7.

    Article  CAS  PubMed  Google Scholar 

  64. Liu J, Wang A, Li L, Huang Y, Xue P, Hao A. Oxidative stress mediates hippocampal neuron death in rats after lithium–pilocarpine-induced status epilepticus. Seizure. 2010;19:165–72.

    Article  CAS  PubMed  Google Scholar 

  65. Moradi F, Eslami F, Rahimi N, Koohfar A, Shayan M, Maadani M, et al. Modafinil exerts anticonvulsive effects against lithium-pilocarpine-induced status epilepticus in rats: a role for tumor necrosis factor-α and nitric oxide signaling. Epilepsy Behav. 2022;130: 108649. https://doi.org/10.1016/j.yebeh.2022.108649.

    Article  PubMed  Google Scholar 

  66. Noroozi N, Shayan M, Maleki A, Eslami F, Rahimi N, Zakeri R, et al. Protective effects of dapsone on scopolamine-induced memory impairment in mice: involvement of nitric oxide pathway. Dement Geriatr Cogn Dis Extra. 2022;12:43–50. https://doi.org/10.1159/000522163.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Han D, Yamada K, Senzaki K, Xiong H, Nawa H, Nabeshima T. Involvement of nitric oxide in pentylenetetrazole-induced kindling in rats. J Neurochem. 2000;74:792–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Tehran University of Medical Sciences (TUMS) and Iran National Sciences Foundation (INSF) (Grant No. 96002757).

Funding

A grant supported this study from the Tehran University of Medical Sciences (TUMS) and Iran National Sciences Foundation (INSF) (Grant No. 96002757).

Author information

Authors and Affiliations

Authors

Contributions

ARD: conceptualization, resources, methodology, supervision, writing, review and editing, FE and MS: investigation, project administration, writing original draft, methodology, formal analysis, review and editing, AA: project administration, methodology, writing, review and editing, NR: review and editing, PD: review and editing.

Corresponding author

Correspondence to Ahmad Reza Dehpour.

Ethics declarations

Conflict of interest

None.

Ethics approval

All animal experiments were performed in agreement with the Guidelines for the Care and Use of Laboratory Animal Ethics Committee of Tehran University of Medical Sciences (Ethical code: IR.TUMS.MEDICINE.REC.1399.579) as well as the National Institutes of Health (NIH publication NO. 85–23; revised 1985).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, F., Shayan, M., Amanlou, A. et al. Pentylenetetrazole preconditioning attenuates severity of status epilepticus induced by lithium-pilocarpine in male rats: evaluation of opioid/NMDA receptors and nitric oxide pathway. Pharmacol. Rep 74, 602–613 (2022). https://doi.org/10.1007/s43440-022-00387-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00387-8

Keywords

Navigation