Skip to main content
Log in

Tropisetron attenuates pancreas apoptosis in the STZ-induced diabetic rats: involvement of SIRT1/NF-κB signaling

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Diabetes mellitus (DM) is one of the most common diseases in the worldwide. Type 1 diabetes mellitus (T1DM) is characterized by insulin deficiency and beta cells apoptosis. Tropisetron as a 5-HT3 receptor antagonist has positive effects on the inflammation, apoptosis and glucose lowering. The aim of this study was to investigate the effect of tropisetron on β-cells apoptosis and its possible pathways.

Methods

Animals were divided into five equal groups: the control, tropisetron, diabetes, tropisetron-DM and glibenclamide-DM (seven in each group). Tropisetron and glibenclamide were administrated for 2 weeks after type 1 diabetes induction. Real-time PCR, western blot analysis and TUNEL assay were performed.

Results

We found that tropisetron decreased blood glucose and increased insulin secretion. Protein expression of NF-κB was downregulated, while protein expression of SIRT1 upregulated after tropisetron treatment. Moreover, Bax/Bcl2 ratio decreased in tropisetron-DM group and finally, apoptosis improved in pancreas tissue.

Conclusions

It seems that tropisetron administration improves STZ-induced apoptosis and diabetes in the animals. This effect might be resulted from involvement in NF-κB/ SIRT1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.

    Article  CAS  PubMed  Google Scholar 

  2. Bhattacharya P, Fan J, Haddad C, Essani A, Gopisetty A, Elshabrawy HA, et al. A novel pancreatic β-cell targeting bispecific-antibody (BsAb) can prevent the development of type 1 diabetes in NOD mice. Clin Immunol. 2014;153(1):187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim WH, Lee JW, Suh YH, Hong SH, Choi JS, Lim JH, et al. Exposure to chronic high glucose induces beta-cell apoptosis through decreased interaction of glucokinase with mitochondria: downregulation of glucokinase in pancreatic beta-cells. Diabetes. 2005;54(9):2602–11.

    Article  CAS  PubMed  Google Scholar 

  4. Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;54:S97–107.

    Article  CAS  PubMed  Google Scholar 

  5. Melloul D. Role of NF-kappaB in beta-cell death. Biochem Soc Trans. 2008;36(Pt 3):334–9.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Y, Krishnamurthy B, Mollah ZU, Kay TW, Thomas HE. NF-κB in type 1 diabetes. Inflamm Allergy Drug Targets. 2011;10(3):208–17.

    Article  CAS  PubMed  Google Scholar 

  7. Kuryłowicz A, Nauman J. The role of nuclear factor-kappaB in the development of autoimmune diseases: a link between genes and environment. Acta Biochim Pol. 2008;55(4):629–47.

    Article  PubMed  Google Scholar 

  8. Ide Y, Matsui T, Ishibashi Y, Takeuchi M, Yamagishi S. Pigment epithelium-derived factor inhibits advanced glycation end product-elicited mesangial cell damage by blocking NF-kappaB activation. Microvasc Res. 2010;80(2):227–32.

    Article  CAS  PubMed  Google Scholar 

  9. Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, et al. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity. PLoS ONE. 2012;7(9):e46364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 2013;25(10):1939–48.

    Article  CAS  PubMed  Google Scholar 

  11. Yuan Q, Zhang D, Liu C, Zhang C, Yuan D. Chikusetsusaponin V inhibits LPS-activated inflammatory responses via SIRT1/NF-κB signaling pathway in RAW264.7 cells. Inflammation. 2018;41(6):2149–59.

    Article  CAS  PubMed  Google Scholar 

  12. Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β Cells. PLoS Biol. 2015;13(12):e1002346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Prud'homme GJ, Glinka Y, Udovyk O, Hasilo C, Paraskevas S, Wang Q. GABA protects pancreatic beta cells against apoptosis by increasing SIRT1 expression and activity. Biochem Biophys Res Commun. 2014;452(3):649–54.

    Article  CAS  PubMed  Google Scholar 

  14. Kwon YJ, Hong KW, Park BJ, Jung DH. Serotonin receptor 3B polymorphisms are associated with type 2 diabetes: The Korean genome and epidemiology study. Diabetes Res Clin Pract. 2019;153:76–85.

    Article  CAS  PubMed  Google Scholar 

  15. Tharmaraja T, Stahl D, Hopkins CWP, Persaud SJ, Jones PM, Ismail K, et al. The association between selective serotonin reuptake inhibitors and glycemia: a systematic review and meta-analysis of randomized controlled trials. Psychosom Med. 2019;81(7):570–83.

    Article  CAS  PubMed  Google Scholar 

  16. Mao Z, Lin H, Su W, Li J, Zhou M, Li Z, et al. Deficiency of ZnT8 promotes adiposity and metabolic dysfunction by increasing peripheral serotonin production. Diabetes. 2019;68(6):1197–209.

    Article  CAS  PubMed  Google Scholar 

  17. He XH, Shi YK, Yang JL, Zhang CG, Liu P, Zhou AP, et al. Tropisetron in attenuation of nausea and vomiting in patients undergoing high-dose chemo-radiotherapy supported by autologous peripheral blood stem cell transplantation. Ai Zheng. 2004;23(4):456–60.

    PubMed  Google Scholar 

  18. Alon E, Kocian R, Nett PC, Koechli OR, Baettig U, Grimaudo V. Tropisetron for the prevention of postoperative nausea and vomiting in women undergoing gynecologic surgery. Anesth Analg. 1996;82(2):338–41.

    CAS  PubMed  Google Scholar 

  19. Barzegar-Fallah A, Alimoradi H, Asadi F, Dehpour AR, Asgari M, Shafiei M. Tropisetron ameliorates early diabetic nephropathy in streptozotocin-induced diabetic rats. Clin Exp Pharmacol Physiol. 2015;42(4):361–8.

    Article  CAS  PubMed  Google Scholar 

  20. Rahimian R, Fakhfouri G, Ejtemaei Mehr S, Ghia JE, Genazzani AA, Payandemehr B, et al. Tropisetron attenuates amyloid-beta-induced inflammatory and apoptotic responses in rats. Eur J Clin Invest. 2013;43(10):1039–51.

    Article  CAS  PubMed  Google Scholar 

  21. Yu Y, Zhu W, Liang Q, Liu J, Yang X, Sun G. Tropisetron attenuates lipopolysaccharide induced neuroinflammation by inhibiting NF-κB and SP/NK1R signaling pathway. J Neuroimmunol. 2018;320:80–6.

    Article  CAS  PubMed  Google Scholar 

  22. Barzegar-Fallah A, Alimoradi H, Razmi A, Dehpour AR, Asgari M, Shafiei M. Inhibition of calcineurin/NFAT pathway plays an essential role in renoprotective effect of tropisetron in early stage of diabetic nephropathy. Eur J Pharmacol. 2015;767:152–9.

    Article  CAS  PubMed  Google Scholar 

  23. Barzegar-Fallah A, Alimoradi H, Mehrzadi S, Barzegar-Fallah N, Zendedel A, Abbasi A, et al. The neuroprotective effect of tropisetron on vincristine-induced neurotoxicity. Neurotoxicology. 2014;41:1–8.

    Article  CAS  PubMed  Google Scholar 

  24. Aminzadeh A. Protective effect of tropisetron on high glucose induced apoptosis and oxidative stress in PC12 cells: roles of JNK, P38 MAPKs, and mitochondria pathway. Metab Brain Dis. 2017;32(3):819–26.

    Article  CAS  PubMed  Google Scholar 

  25. Gholizadeh-Ghaleh Aziz S, Naderi R, Mahmodian N. Ameliorative effects of tropisetron on liver injury in streptozotocin-induced diabetic rats. Arch Physiol Biochem. 2019;15:1–6.

    Google Scholar 

  26. García-Galicia MC, Burgueño-Tapia E, Romero-Rojas A, García-Zebadúa JC, Cornejo-Garrido J, Ordaz-Pichardo C. Anti-hyperglycemic effect, inhibition of inflammatory cytokines expression, and histopathology profile in streptozotocin-induced diabetic rats treated with Arracacia tolucensis aerial-parts extracts. J Ethnopharmacol. 2014;152(1):91–8.

    Article  PubMed  Google Scholar 

  27. Komeili Movahhed T, Moslehi A, Golchoob M, Ababzadeh S. Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions. Iran J Basic Med Sci. 2019;22(7):736–44.

    PubMed  PubMed Central  Google Scholar 

  28. Asadi F, Razmi A, Dehpour AR, Shafiei M. Tropisetron inhibits high glucose-induced calcineurin/NFAT hypertrophic pathway in H9c2 myocardial cells. J Pharm Pharmacol. 2016;68(4):485–93.

    Article  CAS  PubMed  Google Scholar 

  29. Tomita T. Apoptosis of pancreatic β-cells in type 1 diabetes. Bosn J Basic Med Sci. 2017;17(3):183–93.

    PubMed  PubMed Central  Google Scholar 

  30. Mirshafa A, Mohammadi H, Shokrzadeh M, Mohammadi E, Talebpour Amiri F, Shaki F. Tropisetron protects against brain aging via attenuating oxidative stress, apoptosis and inflammation: The role of SIRT1 signaling. Life Sci. 2020;248:117452.

    Article  CAS  PubMed  Google Scholar 

  31. Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun. 2018;500(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  32. Federici M, Hribal M, Perego L, Ranalli M, Caradonna Z, Perego C, et al. High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes. 2001;50(6):1290–301.

    Article  CAS  PubMed  Google Scholar 

  33. Kooptiwut S, Kaewin S, Semprasert N, Sujjitjoon J, Junking M, Suksri K, et al. Estradiol prevents high glucose-induced β-cell apoptosis by decreased BTG2 expression. Sci Rep. 2018;8(1):12256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mandrup-Poulsen T. Apoptotic signal transduction pathways in diabetes. Biochem Pharmacol. 2003;66(8):1433–40.

    Article  CAS  PubMed  Google Scholar 

  35. Kang Z, Zeng J, Zhang T, Lin S, Gao J, Jiang C, et al. Hyperglycemia induces NF-κB activation and MCP-1 expression via downregulating GLP-1R expression in rat mesangial cells: inhibition by metformin. Cell Biol Int. 2019;43(8):940–53.

    Article  CAS  PubMed  Google Scholar 

  36. Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res. 2016;167(1):228–56.

    Article  CAS  PubMed  Google Scholar 

  37. Chandirasegaran G, Elanchezhiyan C, Ghosh K, Sethupathy S. Berberine chloride ameliorates oxidative stress, inflammation and apoptosis in the pancreas of Streptozotocin induced diabetic rats. Biomed Pharmacother. 2017;95:175–85.

    Article  CAS  PubMed  Google Scholar 

  38. Timucin AC, Basaga H. Pro-apoptotic effects of lipid oxidation products: HNE at the crossroads of NF-κB pathway and anti-apoptotic Bcl-2. Free Radic Biol Med. 2017;111:209–18.

    Article  CAS  PubMed  Google Scholar 

  39. Wang W, Sun W, Cheng Y, Xu Z, Cai L. Role of sirtuin-1 in diabetic nephropathy. J Mol Med (Berl). 2019;97(3):291–309.

    Article  CAS  Google Scholar 

  40. Shi X, Pi L, Zhou S, Li X, Min F, Wang S, Liu Z, Wu J. Activation of Sirtuin 1 attenuates high glucose-induced neuronal apoptosis by deacetylating p53. Front Endocrinol (Lausanne). 2018;9:274.

    Article  Google Scholar 

  41. Lee JH, Song MY, Song EK, Kim EK, Moon WS, Han MK, et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes. 2009;58(2):344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu X, Wang Z, Gao J, Han D, Zhang L, Chen P, et al. SIRT1 suppresses p53-dependent apoptosis by modulation of p21 in osteoblast-like MC3T3-E1 cells exposed to fluoride. Toxicol In Vitro. 2019;57:28–38.

    Article  CAS  PubMed  Google Scholar 

  43. Yu L, Chen JF, Shuai X, Xu Y, Ding Y, Zhang J, et al. Artesunate protects pancreatic beta cells against cytokine-induced damage via SIRT1 inhibiting NF-κB activation. J Endocrinol Invest. 2016;39(1):83–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Moslehi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, R., Shirpoor, A., Samadi, M. et al. Tropisetron attenuates pancreas apoptosis in the STZ-induced diabetic rats: involvement of SIRT1/NF-κB signaling. Pharmacol. Rep 72, 1657–1665 (2020). https://doi.org/10.1007/s43440-020-00146-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00146-7

Keywords

Navigation