Skip to main content
Log in

Radiosynthesis and evaluation of [18F]FMTP, a COX-2 PET ligand

  • Short Communication
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The upregulation of cyclooxygenase-2 (COX-2) is involved in neuroinflammation associated with many neurological diseases as well as cancers of the brain. Outside the brain, inflammation and COX-2 induction contribute to the pathogenesis of pain, arthritis, acute allograft rejection, and in response to infections, tumors, autoimmune disorders, and injuries. Herein, we report the radiochemical synthesis and evaluation of [18F]6-fluoro-2-(4-(methylsulfonyl)phenyl)-N-(thiophen-2-ylmethyl)pyrimidin-4-amine ([18F]FMTP), a high-affinity COX-2 inhibitor, by cell uptake and PET imaging studies.

Methods

The radiochemical synthesis of [18F]FMTP was optimized using chlorine to fluorine displacement method, by reacting [18F]fluoride/K222/K2CO3 with the precursor molecule. Cellular uptake studies of [18F]FMTP was performed in COX-2 positive BxPC3 and COX-2 negative PANC-1 cell lines with unlabeled FMTP as well as celecoxib to define specific binding agents. Dynamic microPET image acquisitionwas performed in anesthetized nude mice (n = 3), lipopolysaccharide (LPS) induced neuroinflammation mice (n = 4), and phosphate-buffered saline (PBS) administered control mice (n = 4) using a Trifoil microPET/CT for a scan period of 60 min.

Results

A twofold higher binding of [18F]FMTP was found in COX-2 positive BxPC3 cells compared with COX-2 negative PANC-1 cells. The radioligand did not show specific binding to COX-2 negative PANC-1 cells. MicroPET imaging in wild-type mice indicated blood–brain barrier (BBB) penetration and fast washout of [18F]FMTP in the brain, likely due to the low constitutive COX-2 expression in the normal brain. In contrast, a ~ twofold higher uptake of the radioligand was found in LPS-induced mice brain than PBS treated control mice.

Conclusions

Specific binding to COX-2 in BxPC3 cell lines, BBB permeability, and increased brain uptake in neuroinflammation mice qualifies [18F]FMTP as a potential PET tracer for studying inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

AD:

Alzheimer’s disease;

ALS:

Amyotrophic lateral sclerosis;

BBB:

Blood–brain barrier;

CNS:

Central nervous system;

COX2:

Cyclooxigenase-2;

COXIBs:

COX-2 inhibitors;

LPS:

Lipopolysaccharide;

NSAID:

Non-steroidal anti-inflammatory drugs;

MDD:

Major depressive disorders;

PBS:

Phosphate-buffered saline;

PD:

Parkinson’s disease;

PET:

Positron Emission Tomography;

RCY:

Radiochemical yield;

SUVs:

Standardized uptake values;

TACs:

Time-activity curves;

TBAF:

Tetra-n-butyl ammonium fluoride;

TBI:

Traumatic brain injury;

VOI:

Volume of interest

References

  1. Fitzpatrick F. Cyclooxygenase enzymes: regulation and function. Curr Pharm Des. 2004;10(6):577–88.

    CAS  PubMed  Google Scholar 

  2. DeWitt DL. Prostaglandin endoperoxide synthase: regulation of enzyme expression. Biochim Biophys Acta. 1991;1083(2):121–34.

    CAS  PubMed  Google Scholar 

  3. Smith WL, Marnett LJ. Prostaglandin endoperoxide synthase: structure and catalysis. Biochim Biophys Acta. 1991;1083(1):1–17.

    CAS  PubMed  Google Scholar 

  4. Ji B, Kumata K, Onoe H, Kaneko H, Zhang M-R, Seki C, et al. Assessment of radioligands for PET imaging of cyclooxygenase-2 in an ischemic neuronal Injury model. Brain Res. 2013;1533:152–62.

    CAS  PubMed  Google Scholar 

  5. Yasojima K, Schwab C, McGeer EG, McGeer PL. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in the human brain and peripheral organs. Brain Res. 1999;830(2):226–36.

    CAS  PubMed  Google Scholar 

  6. Ho L, Pieroni C, Winger D, Purohit DP, Aisen PS, Pasinetti GM. Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer’s disease. J Neurosci Res. 1999;57(3):295–303.

    CAS  PubMed  Google Scholar 

  7. Botting R, Ayoub SS. COX-3 and the mechanism of action of paracetamol/acetaminophen. Prostaglandins Leukot Essent Fatty Acids. 2005;72(2):85–7.

    CAS  PubMed  Google Scholar 

  8. Schwab JM, Schluesener HJ, Meyermann R, Serhan CN. COX-3 the enzyme and the concept: steps towards highly specialized pathways and precision therapeutics? Prostaglandins Leukot Essent Fatty Acid. 2003;69(5):339–43.

    CAS  Google Scholar 

  9. Warner TD, Mitchell JA. Cyclooxygenase-3 (COX-3): filling in the gaps toward a COX continuum? Proc Natl Acad Sci USA. 2002;99(21):13371–3.

    CAS  PubMed  Google Scholar 

  10. Choi SH, Aid S, Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci. 2009;30(4):174–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol. 2004;63(9):901–10.

    CAS  PubMed  Google Scholar 

  12. Guan PP, Wang P. Integrated communications between cyclooxygenase-2 and Alzheimer’s disease. FASEB J. 2019;33(1):13–33.

    CAS  PubMed  Google Scholar 

  13. Dhir A. An update of cyclooxygenase (COX)-inhibitors in epilepsy disorders. Expert Opin Investig Drugs. 2019;28(2):191–205.

    CAS  PubMed  Google Scholar 

  14. Rojas A, Chen D, Ganesh T, Varvel NH, Dingledine R. The COX-2/prostanoid signaling cascades in seizure disorders. Expert Opin Ther Targets. 2019;23(1):1–13.

    CAS  PubMed  Google Scholar 

  15. Strauss KI. COX2 inhibitors for acquired brain injuries: is the time ripe? Crit Care Med. 2010;38(2):723–4.

    PubMed  PubMed Central  Google Scholar 

  16. de Vries EF, Dierckx RA, Klein HC. Nuclear imaging of inflammation in neurologic and psychiatric disorders. Curr Clin Pharmacol. 2006;1(3):229–42.

    PubMed  Google Scholar 

  17. Fond G, Hamdani N, Kapczinski F, Boukouaci W, Drancourt N, Dargel A, et al. Effectiveness and tolerance of anti-inflammatory drugs' add-on therapy in major mental disorders: a systematic qualitative review. Acta Psychiatr Scand. 2014;129(3):163–79.

    CAS  PubMed  Google Scholar 

  18. Na KS, Jung HY, Kim YK. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:277–86.

    CAS  PubMed  Google Scholar 

  19. Mathew ST, Devi GS, Prasanth VV, Vinod B. Efficacy and safety of COX-2 Inhibitors in the clinical management of arthritis: mini review. ISRN Pharmacol. 2011;2011:480291.

    PubMed  PubMed Central  Google Scholar 

  20. Yang X, Ma N, Szabolcs MJ, Zhong J, Athan E, Sciacca RR, et al. Upregulation of COX-2 during cardiac allograft rejection. Circulation. 2000;101(4):430–8.

    CAS  PubMed  Google Scholar 

  21. Patti R, Gumired K, Reddanna P, Sutton LN, Phillips PC, Reddy CD. Overexpression of cyclooxygenase-2 (COX-2) in human primitive neuroectodermal tumors: effect of celecoxib and rofecoxib. Cancer Lett. 2002;180(1):13–211.

    CAS  PubMed  Google Scholar 

  22. Puljak L, Marin A, Vrdoljak D, Markotic F, Utrobicic A, Tugwell P. Celecoxib for osteoarthritis. Cochrane Database Syst Rev. 2017;5:CD009865.

    PubMed  Google Scholar 

  23. Rayar AM, Lagarde N, Ferroud C, Zagury JF, Montes M, Sylla-Iyarreta VM. Update on COX-2 selective inhibitors: chemical classification, side effects and their use in cancers and neuronal diseases. Curr Top Med Chem. 2017;17(26):2935–56.

    CAS  PubMed  Google Scholar 

  24. Miao XP, Ouyang Q, Li HY, Wen ZH, Zhang DK, Cui XY. Role of selective cyclooxygenase-2 inhibitors in exacerbation of inflammatory bowel disease: a systematic review and meta-analysis. Current Therapeutic Res. 2008;69(3):181–91.

    CAS  Google Scholar 

  25. Prabhakaran J, Majo VJ, Simpson NR, Van Heertum RL, Mann JJ, Kumar JSD. Synthesis of [11C]celecoxib: a potential PET probe for imaging COX-2 expression. J Label Comp Radiopharm. 2005;48:887–95.

    CAS  Google Scholar 

  26. Prabhakaran J, Underwood MD, Parsey RV, Arango V, Majo VJ, Simpson NR, et al. Synthesis and in vivo evaluation of [18F]-4-[5-(4-methylphenyl)-3(trifluoromethyl) -1H-pyrazol-1-yl]benzenesul- fonamide as a PET imaging probe for COX-2 expression. Bioorg Med Chem Lett. 2007;15:1802–7.

    CAS  Google Scholar 

  27. Toyokuni T, Kumar JSD, Walsh JC, Shapiro A, Talley JJ, Phelps ME, et al. Synthesis of 4-(5-[18F]fluoromethyl-3phenylisoxazol-4-yl)benzenesulfonamide, a new [18F]fluorinated analogue of valdecoxib, as a potential radiotracer for imaging cyclooxygenase-2 with positron emission tomography. Bioorg Med Chem Lett. 2005;15:4699–702.

    CAS  PubMed  Google Scholar 

  28. Prabhakaran J, Underwood MU, Zanderigo F, Simpson NR, Cooper AR, Matthew J, et al. Radiosynthesis and in vivo evaluation of [11C]MOV as a PET imaging agent for COX-2. Bioorg Med Chem Let. 2018;28(14):2432–5.

    CAS  Google Scholar 

  29. Kaur J, Tietz O, Bhardwaj A, Marshall A, Way J, Wuest M, et al. Design, synthesis, and evaluation of an 18F-labeled radiotracer based on celecoxib–NBD for positron emission tomography (PET) imaging of cyclooxygenase-2 (COX-2). Chem Med Chem. 2015;10:1635–40.

    CAS  PubMed  Google Scholar 

  30. Wuest F, Kniess T, Bergmann R, Pietszsch J. Synthesis and evaluation in vitro and in vivo of a 11C-labeled cyclooxygenase-2 (COX-2) inhibitor. Bioorg Med Chem. 2008;16:7662–700.

    CAS  PubMed  Google Scholar 

  31. De Vries EFJ, van Waarde A, Buursma AR, Vaalburg W. Synthesis and in vivo evaluation of 18F-desbromo-DuP-697 as a PET tracer for cyclooxygenase-2 expression. J Nucl Med. 2003;44:1700–6.

    PubMed  Google Scholar 

  32. De Vries EFJ, Doorduin J, Dierckx RA, van Waarde A. Evaluation of [11C]rofecoxib as PET tracer for cyclooxygenase 2 overexpression in rat models of inflammation. Nucl Med Biol. 2008;35:35–42.

    PubMed  Google Scholar 

  33. Tanaka M, Fujisaka Y, Kawamura K, Ishiwata K, Qinggeletu FY, Mukai T, et al. Radiosynthesis and evaluation of 11C-labeled diaryl-substituted imidazole and indole derivatives for mapping cyclooxygenase-2. Biol Pharm Bull. 2006;29:2087–209.

    CAS  PubMed  Google Scholar 

  34. Pacelli A, Greenman J, Cawthorne C, Smith G. Imaging COX-2 expression in cancer using PET/SPECT radioligands: current status and future directions. J Labelled Comp Radiopharm. 2014;57(4):317–22.

    CAS  PubMed  Google Scholar 

  35. Tietz O, Marshall A, Wuest M, Wang M, Wuest F. Radiotracers for molecular imaging of cyclooxygenase-2 (COX-2) enzyme. Curr Med Chem. 2013;20(35):4350–69.

    CAS  PubMed  Google Scholar 

  36. Kumar JSD, Zanderigo F, Prabhakaran J, Rubin-Falcone H, Parsey RV, Mann JJ. In vivo evaluation of [11C]TMI, a COX-2 selective PET tracer, in baboons. Bioorg Med Chem Lett. 2018;28(23–24):3592–5.

    CAS  PubMed  Google Scholar 

  37. Tietz O, Wuest M, Marshall A, Glubrecht D, Hamann I, Wang M, et al. PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. Eur J Nuc Med Mol Imag Res. 2016;6(1):37.

    Google Scholar 

  38. Tietz O, Marshall A, Bergman C, Wuest M, Wuest F. Impact of structural alterations on the radiopharmacological profile of 18F-labeled pyrimidines as cyclooxygenase-2 (COX-2) imaging agents. Nucl Med Biol. 2018;62–63:9–17.

    PubMed  Google Scholar 

  39. Litchfield M, Wuest M, Glubrecht D, Wuest P. Radiosynthesis and biological evaluation of [18F]Triacoxib: a new radiotracer for PET imaging of COX-2. Mol Pharm. 2020;17(1):251–61.

    CAS  PubMed  Google Scholar 

  40. Kim M-J, Shrestha SS, Cortes M, Singh P, Morse C, Liow J-S, et al. Evaluation of two potent and selective PET radioligands to image COX-1 and COX-2 in rhesus monkeys. J Nucl Med. 2018;59(12):1907–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gallagher E, Shrestha S, Eldridge M, Cortes M, Yu Z-X, LehmannM, et al. Novel PET radioligands show that COX-2, but not COX-1, is induced by neuroinflammation in rhesus macaque. Biol Psychiatry Ann Meet. 2018;83(9):S160.

    Google Scholar 

  42. Prabhakaran J, Kumar JSD, Simpson NR, Kim J, Castrillon J, Molotkov M, et al. Radiosynthesis and evaluation of [18F]FMTP: a potential COX-2 PET ligand. J Nucl Med. 2019;60:1106 (S-1-).

    Google Scholar 

  43. Kumar JSD, Mann JJ, Mintz, A, PET Radiolabeled COX-2 inhibitors bearing methysulfonyl arylpyrimidine/isoxazols molecules and uses thereof. U.S. Prov. Appl. No. 62/864, 339; 2019.

  44. Cortes-Salva MY, Shrestha S, Singh P, Morse CL, Jenko KJ, Montero Santamaria JA, et al. 2-(4-Methylsulfonylphenyl)pyrimidines as prospective radioligands for imaging cyclooxygenase-2 with PET-synthesis, triage, and radiolabeling. Molecules. 2018;23(11):2850.

    PubMed Central  Google Scholar 

  45. Orjales A, Mosquera R, López B, Olivera R, Labeaga L, Núñez MT. Novel 2-(4-methylsulfonylphenyl)pyrimidine derivatives as highly potent and specific COX-2 inhibitors. Bioorg Med Chem. 2008;16(5):2183–99.

    CAS  PubMed  Google Scholar 

  46. Catorce MN, Gevorkian G. LPS-induced murine neuroinflammation model: main features and suitability for pre-clinical assessment of nutraceuticals. Curr Neuropharmacol. 2016;14(2):155–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Font-Nieves M, Sans-Fons MG, Gorina R, Bonfill-Teixidor E, Salas-Pérdomo A, Márquez-Kisinousky L, et al. Induction of COX-2 enzyme and down-regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E2 production in astrocytes. J Biol Chem. 2012;287(9):6454–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yao R, Seidel J, Johnson CA, Daube-Witherspoon ME, Green MV, Carson RE. Performance characteristics of the 3-D OSEM algorithm in the reconstruction of small animal PET images Ordered-subsets expectation-maximization. IEEE Trans Med Imag. 2000;19:798–804.

    CAS  Google Scholar 

  49. Yang Z, Zan Y, Zheng X, Hai W, Chen K, Huang Q, Xu Y, Peng J. Dynamic FDG-PET imaging to differentiate malignancies from inflammation in subcutaneous and in situ mouse model for non-small cell lung carcinoma (NSCLC). PLoS ONE. 2015;10(9):e0139089.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by Diane Goldberg Foundation (NYSPI/ CUMC) and NCATS UL1TR001873 (Reilly) Irving Institute/CTSA Translational Therapeutics Accelerator.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. S. Dileep Kumar or Akiva Mintz.

Ethics declarations

Conflict of interest

Dr. Mann receives royalties for commercial use of the C-SSRS from the Research Foundation for Mental Hygiene. The other authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J.S.D., Prabhakaran, J., Molotkov, A. et al. Radiosynthesis and evaluation of [18F]FMTP, a COX-2 PET ligand. Pharmacol. Rep 72, 1433–1440 (2020). https://doi.org/10.1007/s43440-020-00124-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00124-z

Keywords

Navigation