Skip to main content
Log in

Effect of fluoxetine on proliferation and/or survival of microglia and oligodendrocyte progenitor cells in the fornix and corpus callosum of the mouse brain

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Fluoxetine is one of the most widely prescribed antidepressants and a selective inhibitor of presynaptic 5-HT transporters. The fornix is the commissural and projection fiber that transmits signals from the hippocampus to other parts of the brain and opposite site of hippocampus. The corpus callosum (CC) is the largest of the commissural fibers that link the cerebral cortex of the left and right cerebral hemispheres. These brain regions play pivotal roles in cognitive functions, and functional abnormalities in these regions have been implicated in the development of various brain diseases. The purpose of the present study was to investigate the effects of fluoxetine on the proliferation and/or survival of microglia and oligodendrocyte progenitor cells (OPCs) in the fornix and CC, the white matter connecting cortical–limbic system, of the adult mouse brain.

Methods

The effects of fluoxetine on the proliferation and/or survival of microglia and OPCs were examined in lipopolysaccharide (LPS)-treated and normal mice. Proliferating cells were detected in mice that drank water containing the thymidine analog, bromodeoxyuridine (BrdU), using immunohistochemistry.

Result

Fluoxetine significantly attenuated LPS-induced increases in the number of BrdU-labeled microglia and morphological activation from the ramified to ameboid shape, and decreased the number of BrdU-labeled OPCs under basal conditions.

Conclusions

The present results indicate that fluoxetine exerts inhibitory effects on LPS-induced increases in the proliferation and/or survival and morphological activation of microglia and basal proliferation and/or survival of OPCs in the fornix and CC of adult mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BrdU:

Bromodeoxyuridine

CC:

Corpus callosum

LPS:

Lipopolysaccharide

MS:

Multiple sclerosis

OPCs:

Oligodendrocyte progenitor cells

PBS:

Phosphate-buffered saline

PBST:

PBS containing 0.3% Triton X-100

PFA:

Paraformaldehyde

vhc:

Ventral hippocampal commissure

References

  1. Wong DT, Horng JS, Bymaster FP, Hauser KL, Molloy BB. A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Life Sci. 1974;15:471–9.

    CAS  PubMed  Google Scholar 

  2. Sommi RW, Crismon ML, Bowden CL. Fluoxetine: a serotonin-specific, second-generation antidepressant. Pharmacotherapy. 1987;7:1–15.

    CAS  PubMed  Google Scholar 

  3. Garrison GD, Levin GM. Factors affecting prescribing of the newer antidepressants. Ann Pharmacother. 2000;34:10–4.

    CAS  PubMed  Google Scholar 

  4. Fuller RW, Wong DT, Robertson DW. Fluoxetine, a selective inhibitor of serotonin uptake. Med Res Rev. 1991;11:17–34.

    CAS  PubMed  Google Scholar 

  5. Myers RL. The 100 most important chemical compounds: a reference guide. Westport: Greenwood Press; 2007.

    Google Scholar 

  6. Roumestan C, Michel A, Bichon F, Portet K, Detoc M, Henriquet C, et al. Anti-inflammatory properties of desipramine and fluoxetine. Respir Res. 2007;8:35.

    PubMed  PubMed Central  Google Scholar 

  7. Abdel-Salam OM, Baiuomy AR, Arbid MS. Studies on the anti-inflammatory effect of fluoxetine in the rat. Pharmacol Res. 2004;49:119–31.

    CAS  PubMed  Google Scholar 

  8. Wang Y, Gu YH, Liu M, Bai Y, Wang HL. Fluoxetine protects against methamphetamine-induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats. Mol Med Rep. 2017;15:673–80.

    CAS  PubMed  Google Scholar 

  9. Liu D, Wang Z, Liu S, Wang F, Zhao S, Hao A. Anti-inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells. Neuropharmacology. 2011;61:592–9.

    CAS  PubMed  Google Scholar 

  10. Zhang F, Zhou H, Wilson BC, Shi JS, Hong JS, Gao HM. Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism Relat Disord. 2012;18(Suppl 1):S213–S217217.

    PubMed  PubMed Central  Google Scholar 

  11. Lim CM, Kim SW, Park JY, Kim C, Yoon SH, Lee JK. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J Neurosci Res. 2009;87:1037–45.

    CAS  PubMed  Google Scholar 

  12. Suzumura A. Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci. 2013;14:16–20.

    CAS  PubMed  Google Scholar 

  13. Werneburg S, Feinberg PA, Johnson KM, Schafer DP. A microglia–cytokine axis to modulate synaptic connectivity and function. Curr Opin Neurobiol. 2017;47:138–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. D'Mello C, Swain MG. Immune-to-brain communication pathways in inflammation-associated sickness and depression. Curr Top Behav Neurosci. 2017;31:73–94.

    CAS  PubMed  Google Scholar 

  15. Pape K, Tamouza R, Leboyer M, Zipp F. Immunoneuropsychiatry—novel perspectives on brain disorders. Nat Rev Neurol. 2019;16(6):317–28.

    Google Scholar 

  16. Ledo JH, Azevedo EP, Beckman D, Ribeiro FC, Santos LE, Razolli DS, et al. Cross talk between brain innate immunity and serotonin signaling underlies depressive-like behavior induced by Alzheimer's amyloid-beta oligomers in mice. J Neurosci. 2016;36:12106–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Clemente D, Ortega MC, Melero-Jerez C, de Castro F. The effect of glia–glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases. Front Cell Neurosci. 2013;7:268.

    PubMed  PubMed Central  Google Scholar 

  18. Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, et al. T cells become licensed in the lung to enter the central nervous system. Nature. 2012;488:675–9.

    CAS  PubMed  Google Scholar 

  19. Lambertsen KL, Deierborg T, Gregersen R, Clausen BH, Wirenfeldt M, Nielsen HH, et al. Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol. 2011;70:481–94.

    PubMed  Google Scholar 

  20. Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH. Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci. 2013;33:2481–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Olmos-Alonso A, Schetters ST, Sri S, Askew K, Mancuso R, Vargas-Caballero M, et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology. Brain. 2016;139:891–907.

    PubMed  PubMed Central  Google Scholar 

  22. Fukushima S, Furube E, Itoh M, Nakashima T, Miyata S. Robust increase of microglia proliferation in the fornix of hippocampal axonal pathway after a single LPS stimulation. J Neuroimmunol. 2015;285:31–40.

    CAS  PubMed  Google Scholar 

  23. Furube E, Morita M, Miyata S. Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse. Cell Tissue Res. 2015;362:347–65.

    PubMed  Google Scholar 

  24. Furube E, Kawai S, Inagaki H, Takagi S, Miyata S. Brain region-dependent heterogeneity and dose-dependent difference in transient microglia population increase during lipopolysaccharide-induced inflammation. Sci Rep. 2018;8:2203.

    PubMed  PubMed Central  Google Scholar 

  25. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte–microglia cross-talk in the central nervous system. Immunology. 2014;141:302–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Douet V, Chang L. Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders. Front Aging Neurosci. 2014;6:343.

    PubMed  Google Scholar 

  27. Garg N, Reddel SW, Miller DH, Chataway J, Riminton DS, Barnett Y, et al. The corpus callosum in the diagnosis of multiple sclerosis and other CNS demyelinating and inflammatory diseases. J Neurol Neurosurg Psychiatry. 2015;86:1374–82.

    PubMed  Google Scholar 

  28. Skaper SD. Oligodendrocyte precursor cells as a therapeutic target for demyelinating diseases. Prog Brain Res. 2019;245:119–44.

    PubMed  Google Scholar 

  29. Fan LW, Bhatt A, Tien LT, Zheng B, Simpson KL, Lin RC, et al. Exposure to serotonin adversely affects oligodendrocyte development and myelination in vitro. J Neurochem. 2015;133:532–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hiratsuka D, Furube E, Taguchi K, Tanaka M, Morita M, Miyata S. Remyelination in the medulla oblongata of adult mouse brain during experimental autoimmune encephalomyelitis. J Neuroimmunol. 2018;319:41–544.

    CAS  PubMed  Google Scholar 

  31. Iniguez SD, Warren BL, Bolanos-Guzman CA. Short- and long-term functional consequences of fluoxetine exposure during adolescence in male rats. Biol Psychiatry. 2010;67:1057–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshida A, Furube E, Mannari T, Takayama Y, Kittaka H, Tominaga M, et al. TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation. Sci Rep. 2016;6:26088.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Paxinos G, Franklin K. The mouse brain in stereotaxic coordinates. San Diego: Academic Press; 2007.

    Google Scholar 

  34. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.

    CAS  PubMed  Google Scholar 

  35. Favre P, Pauling M, Stout J, Hozer F, Sarrazin S, Abe C, et al. Widespread white matter microstructural abnormalities in bipolar disorder: evidence from mega- and meta-analyses across 3033 individuals. Neuropsychopharmacology. 2019;44:2285–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rasmussen S, Wang Y, Kivisakk P, Bronson RT, Meyer M, Imitola J, et al. Persistent activation of microglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosis-like lesions in relapsing–remitting experimental autoimmune encephalomyelitis. Brain. 2007;130:2816–29.

    PubMed  Google Scholar 

  37. Benveniste EN. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med (Berl). 1997;75:165–73.

    CAS  Google Scholar 

  38. Mostert JP, Sijens PE, Oudkerk M, De Keyser J. Fluoxetine increases cerebral white matter NAA/Cr ratio in patients with multiple sclerosis. Neurosci Lett. 2006;402:22–4.

    CAS  PubMed  Google Scholar 

  39. Mostert JP, Admiraal-Behloul F, Hoogduin JM, Luyendijk J, Heersema DJ, van Buchem MA, et al. Effects of fluoxetine on disease activity in relapsing multiple sclerosis: a double-blind, placebo-controlled, exploratory study. J Neurol Neurosurg Psychiatry. 2008;79:1027–31.

    CAS  PubMed  Google Scholar 

  40. Bhatia HS, Roelofs N, Munoz E, Fiebich BL. Alleviation of microglial activation induced by p38 MAPK/MK2/PGE2 axis by capsaicin: potential involvement of other than TRPV1 mechanism/s. Sci Rep. 2017;7:116.

    PubMed  PubMed Central  Google Scholar 

  41. Tao R, Ma Z, Auerbach SB. Differential effect of local infusion of serotonin reuptake inhibitors in the raphe versus forebrain and the role of depolarization-induced release in increased extracellular serotonin. J Pharmacol Exp Ther. 2000;294:571–9.

    CAS  PubMed  Google Scholar 

  42. Reyes-Haro D, Garcia-Alcocer G, Miledi R, Garcia-Colunga J. Uptake of serotonin by adult rat corpus callosum is partially reduced by common antidepressants. J Neurosci Res. 2003;74:97–102.

    CAS  PubMed  Google Scholar 

  43. Bernstein M, Lyons SA, Moller T, Kettenmann H. Receptor-mediated calcium signalling in glial cells from mouse corpus callosum slices. J Neurosci Res. 1996;46:152–63.

    CAS  PubMed  Google Scholar 

  44. Persico AM, Altamura C, Calia E, Puglisi-Allegra S, Ventura R, Lucchese F, et al. Serotonin depletion and barrel cortex development: impact of growth impairment vs. serotonin effects on thalamocortical endings. Cereb Cortex. 2000;10:181–91.

    CAS  PubMed  Google Scholar 

  45. Simpson KL, Weaver KJ, de Villers-Sidani E, Lu JY, Cai Z, Pang Y, et al. Perinatal antidepressant exposure alters cortical network function in rodents. Proc Natl Acad Sci USA. 2011;108:18465–70.

    CAS  PubMed  Google Scholar 

  46. Wennstrom M, Janelidze S, Bay-Richter C, Minthon L, Brundin L. Pro-inflammatory cytokines reduce the proliferation of NG2 cells and increase shedding of NG2 in vivo and in vitro. PLoS One. 2014;9:e109387.

    PubMed  PubMed Central  Google Scholar 

  47. Fukushima S, Nishikawa K, Furube E, Muneoka S, Ono K, Takebayashi H, et al. Oligodendrogenesis in the fornix of adult mouse brain; the effect of LPS-induced inflammatory stimulation. Brain Res. 2015;1627:52–69.

    CAS  PubMed  Google Scholar 

  48. Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA. 2006;103:8233–8.

    CAS  PubMed  Google Scholar 

  49. Vartanian T, Li Y, Zhao M, Stefansson K. Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med. 1995;1:732–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Horiuchi M, Itoh A, Pleasure D, Ozato K, Itoh T. Cooperative contributions of interferon regulatory factor 1 (IRF1) and IRF8 to interferon-gamma-mediated cytotoxic effects on oligodendroglial progenitor cells. J Neuroinflammation. 2011;8:8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA. 2003;100:13632–7.

    CAS  PubMed  Google Scholar 

  52. Yoshimura R, Hori H, Ikenouchi-Sugita A, Umene-Nakano W, Ueda N, Nakamura J. Higher plasma interleukin-6 (IL-6) level is associated with SSRI- or SNRI-refractory depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:722–6.

    CAS  PubMed  Google Scholar 

  53. Ondicova K, Tillinger A, Pecenak J, Mravec B. The vagus nerve role in antidepressants action: Efferent vagal pathways participate in peripheral anti-inflammatory effect of fluoxetine. Neurochem Int. 2019;125:47–56.

    CAS  PubMed  Google Scholar 

  54. Rami M, Guillamat-Prats R, Rinne P, Salvermoser M, Ring L, Bianchini M, et al. Chronic intake of the selective serotonin reuptake inhibitor fluoxetine enhances atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38:1007–199.

    CAS  PubMed  Google Scholar 

  55. Niu J, Tsai HH, Hoi KK, Huang N, Yu G, Kim K, et al. Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation. Nat Neurosci. 2019;22:709–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lehmann ML, Brachman RA, Martinowich K, Schloesser RJ, Herkenham M. Glucocorticoids orchestrate divergent effects on mood through adult neurogenesis. J Neurosci. 2013;33:2961–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chetty S, Friedman AR, Taravosh-Lahn K, Kirby ED, Mirescu C, Guo F, et al. Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry. 2014;19:1275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mannari T, Sawa H, Furube E, Fukushima S, Nishikawa K, Nakashimna T, et al. Antidepressant-induced vascular dynamics in the hippocampus of adult mouse brain. Cell Tissue Res. 2014;358:43–55.

    CAS  PubMed  Google Scholar 

  59. Scolding N, Franklin R, Stevens S, Heldin CH, Compston A, Newcombe J. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain. 1998;121(Pt 12):2221–8.

    PubMed  Google Scholar 

  60. Dubois-Dalcq M, Ffrench-Constant C, Franklin RJ. Enhancing central nervous system remyelination in multiple sclerosis. Neuron. 2005;48:9–12.

    CAS  PubMed  Google Scholar 

  61. Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Hoglinger GU, et al. Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci USA. 2007;104:4694–9.

    CAS  PubMed  Google Scholar 

  62. Girolamo F, Ferrara G, Strippoli M, Rizzi M, Errede M, Trojano M, et al. Cerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis. Neurobiol Dis. 2011;43:678–89.

    CAS  PubMed  Google Scholar 

  63. Kroeze Y, Peeters D, Boulle F, Pawluski JL, van den Hove DL, van Bokhoven H, et al. Long-term consequences of chronic fluoxetine exposure on the expression of myelination-related genes in the rat hippocampus. Transl Psychiatry. 2015;5:e642.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by Scientific Research Grants from the Japan Society for the Promotion of Science (No. 16K07027, 19K06921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Miyata.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukushima, S., Kurganov, E., Hiratsuka, D. et al. Effect of fluoxetine on proliferation and/or survival of microglia and oligodendrocyte progenitor cells in the fornix and corpus callosum of the mouse brain. Pharmacol. Rep 72, 340–349 (2020). https://doi.org/10.1007/s43440-020-00079-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00079-1

Keywords

Navigation