Skip to main content
Log in

Chitin deacetylase: from molecular structure to practical applications

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Chitosan and chitooligosaccharides (COS), as derivatives of chitin through deacetylation reaction, have broad applications due to their good biodegradability, biocompatibility, and solubility. In addition, chitosan and COS are involved in cell wall morphogenesis and host–pathogen interactions in vivo. Chitin deacetylases (CDAs) are enzymes that can catalyze the de-N-acetylation of chitin. They are widely distributed in protozoa, algae, bacteria, fungi, and insects with important physiological functions. Compared with the traditional chemical method, enzymatic catalysis by CDAs provides an enzymatic catalysis method to produce chitosan and COS with controllable deacetylation site and environmental friendliness. These characteristics attract researchers to produce CDAs by fungicides or pesticides. However, researches on heterologous expression and directed evolution of CDAs are still lacking. In this review, we summarize the latest knowledge of CDAs, especially for heterologous expression systems and directed evolution strategies, which may contribute to the industrial production and future application of CDAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

COS:

Chitooligosaccharides

CDAs:

Chitin deacetylases

CODs:

Chitooligosaccharides deacetylases

GlcNAc:

N-Acetylglucosamine

GlcN:

Glucosamine

DP:

Degree of polymerization

MW:

Molecular weight

DA:

Degree of acetylation

PA:

Pattern of acetylation

CE4:

Carbohydrate esterase family 4

Dacs:

Diacetylchitobiose deacetylases

D n :

(GlcNH2)n

paCOS:

Partially acetylated chitooligosaccharides

A n :

(GlcNAc)n

GST-tag:

Glutathione S-transferase-tag

MBP:

Maltose binding protein

PDB:

Protein data bank

RBS:

Ribosomal binding site

5′ UTR:

5′ Untranslated region

PCR:

Polymerase chain reaction

CAST:

Combinatorial active site saturation test

HTS:

High-throughput screening

SACA:

Synthesis of acetyl coenzyme A

CWP:

Cell wall proteins

References

  1. Peniche, C., Argüelles-Monal, W., Goycoolea, F.M. Chapter 25 - Chitin and Chitosan: Major sources, properties and applications, in: belgacem, m.n., gandini, a. (eds.), monomers, polymers and composites from renewable resources. Elsevier, Amsterdam. 2008; pp. 517–542. Doi: https://doi.org/10.1016/B978-0-08-045316-3.00025-9

  2. Karrer P, Hofmann A. Polysaccharide XXXIX. Über den enzymatischen Abbau von Chitin und Chitosan I. Helv Chim. 1929;12(1):616–37. https://doi.org/10.1002/hlca.19290120167.

    Article  CAS  Google Scholar 

  3. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32. https://doi.org/10.1016/j.progpolymsci.2006.06.001.

    Article  CAS  Google Scholar 

  4. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36:981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001.

    Article  CAS  Google Scholar 

  5. Aragunde H, Biarnés X, Planas A. Substrate recognition and specificity of chitin deacetylases and related family 4 carbohydrate esterases. Int J Mol Sci. 2018;2018:19. https://doi.org/10.3390/ijms19020412.

    Article  CAS  Google Scholar 

  6. Hao W, Li K, Li P. Review: advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym. 2021;252: 117206. https://doi.org/10.1016/j.carbpol.2020.117206.

    Article  CAS  PubMed  Google Scholar 

  7. Dhillon GS, Kaur S, Brar SK, Verma M. Green synthesis approach: extraction of chitosan from fungus mycelia. Crit Rev Biotechnol. 2013;33:379–403. https://doi.org/10.3109/07388551.2012.717217.

    Article  CAS  PubMed  Google Scholar 

  8. Aranaz I, Acosta N, Civera C, Elorza B, Mingo J, Castro C, Gandía MD, Los L, Heras-Caballero A. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers. 2018;10:213. https://doi.org/10.3390/polym10020213.

    Article  CAS  PubMed Central  Google Scholar 

  9. Batista RA, Espitia PJP, Quintans JSS, Freitas MM, Cerqueira MÂ, Teixeira JA, Cardoso JC. Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym. 2019;205:106–16. https://doi.org/10.1016/j.carbpol.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  10. Cui H, Yuan L, Lin L. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef. Carbohydr Polym. 2017;177:156–64. https://doi.org/10.1016/j.carbpol.2017.08.137.

    Article  CAS  PubMed  Google Scholar 

  11. Negm NA, Hefni HHH, Abd-Elaal AAA, Badr EA, Abou-Kana MTH. Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol. 2020;152:681–702. https://doi.org/10.1016/j.ijbiomac.2020.02.196.

    Article  CAS  PubMed  Google Scholar 

  12. Olatunde OO, Benjakul S. Natural preservatives for extending the shelf-life of seafood: a revisit. Compr Rev Food Sci Food Saf. 2018;17(6):1595–612. https://doi.org/10.1111/1541-4337.12390.

    Article  PubMed  Google Scholar 

  13. Lodhi G, Kim Y-S, Hwang J-W, Kim S-K, Jeon Y-J, Je J-Y, Ahn C-B, Moon S-H, Jeon B-T, Park P-J. Chitooligosaccharide and its derivatives: preparation and biological applications. BioMed Res Int. 2014;2014:1–13. https://doi.org/10.1155/2014/654913.

    Article  CAS  Google Scholar 

  14. Mourya VK, Inamdar NN, Choudhari YM. Chitooligosaccharides: synthesis, characterization and applications. Polym Sci Ser A. 2011;53:583–612. https://doi.org/10.1134/S0965545X11070066.

    Article  CAS  Google Scholar 

  15. Pai RV, Vavia PR. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: effect on ocular disposition. Int J Pharm. 2020;577: 119095. https://doi.org/10.1016/j.ijpharm.2020.119095.

    Article  CAS  PubMed  Google Scholar 

  16. Ye Y, Xu Y, Liang W, Leung GPH, Cheung K-H, Zheng C, Chen F, Lam JKW. DNA-loaded chitosan oligosaccharide nanoparticles with enhanced permeability across Calu-3 cells. J Drug Target. 2013;21:474–86. https://doi.org/10.3109/1061186X.2013.766885.

    Article  CAS  PubMed  Google Scholar 

  17. Lee SH, Suh J-S, Kim HS, Lee JD, Song J, Lee SK. MR evaluation of radiation synovectomy of the knee by means of intra-articular injection of holmium-166-chitosan complex in patients with rheumatoid arthritis: results at 4-month follow-up. Korean J Radiol. 2003;4:170. https://doi.org/10.3348/kjr.2003.4.3.170.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu B. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J Gastroenterol. 2007;13:725. https://doi.org/10.3748/wjg.v13.i5.725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao Y, Park R-D, Muzzarelli RAA. Chitin deacetylases: properties and applications. Mar Drugs. 2010;8:24–46. https://doi.org/10.3390/md8010024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin S, Qin Z, Chen Q, Fan L, Zhou J, Zhao L. Efficient immobilization of Bacterial GH Family 46 chitosanase by carbohydrate-binding module fusion for the controllable preparation of chitooligosaccharides. J Agric Food Chem. 2019;67:6847–55. https://doi.org/10.1021/acs.jafc.9b01608.

    Article  CAS  PubMed  Google Scholar 

  21. Lv YM, Laborda P, Huang K, Cai ZP, Wang M, Lu AM, Doherty C, Liu L, Flitsch SL, Voglmeir J. Highly efficient and selective biocatalytic production of glucosamine from chitin. Green Chem. 2017;19:527–35. https://doi.org/10.1039/C6GC02910H.

    Article  CAS  Google Scholar 

  22. Grifoll-Romero L, Pascual S, Aragunde H, Biarnés X, Planas A. Chitin deacetylases: structures, specificities, and biotech applications. Polymers. 2018;2018:10. https://doi.org/10.3390/polym10040352.

    Article  CAS  Google Scholar 

  23. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5. https://doi.org/10.1093/nar/gkt1178.

    Article  CAS  PubMed  Google Scholar 

  24. Fadouloglou VE, Deli A, Glykos NM, Psylinakis E, Bouriotis V, Kokkinidis M. Crystal structure of the BcZBP, a zinc-binding protein from Bacillus cereus. FEBS J. 2007;274:3044–54. https://doi.org/10.1111/j.1742-4658.2007.05834.x.

    Article  CAS  PubMed  Google Scholar 

  25. Mine S, Niiyama M, Hashimoto W, Ikegami T, Koma D, Ohmoto T, Fukuda Y, Inoue T, Abe Y, Ueda T, Morita J, Uegaki K, Nakamura T. Expression from engineered Escherichia coli chromosome and crystallographic study of archaeal N,N’-diacetylchitobiose deacetylase. FEBS J. 2014;281:2584–96. https://doi.org/10.1111/febs.12805.

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Diao P, Chu J, Zhou G, Zhou J, Lin H, Chen J, Zeng Q. Molecular characterization and function of chitin deacetylase-like from the Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol. 2021;256:110612. https://doi.org/10.1016/j.cbpb.2021.110612.

    Article  CAS  PubMed  Google Scholar 

  27. Bonin M, Sreekumar S, Cord-Landwehr S, Moerschbacher BM. Preparation of defined chitosan oligosaccharides using chitin deacetylases. Int J Mol Sci. 2020;2020:21. https://doi.org/10.3390/ijms21217835.

    Article  CAS  Google Scholar 

  28. Brosson D, Kuhn L, Prensier G, Vivarès CP, Texier C. The putative chitin deacetylase of Encephalitozoon cuniculi: a surface protein implicated in microsporidian spore-wall formation. FEMS Microbiol Lett. 2005;247:81–90. https://doi.org/10.1016/j.femsle.2005.04.031.

    Article  CAS  PubMed  Google Scholar 

  29. Shao Z, Thomas Y, Hembach L, Xing X, Duan D, Moerschbacher BM, Bulone V, Tirichine L, Bowler C. Comparative characterization of putative chitin deacetylases from Phaeodactylum tricornutum and Thalassiosira pseudonana highlights the potential for distinct chitin-based metabolic processes in diatoms. New Phytol. 2019;221:1890–905. https://doi.org/10.1111/nph.15510.

    Article  CAS  PubMed  Google Scholar 

  30. Hirano T, Sugiyama K, Sakaki Y, Hakamata W, Park S-Y, Nishio T. Structure-based analysis of domain function of chitin oligosaccharide deacetylase from Vibrio parahaemolyticus. FEBS Lett. 2015;589:145–51. https://doi.org/10.1016/j.febslet.2014.11.039.

    Article  CAS  PubMed  Google Scholar 

  31. Shahbaz U, Yu X. Cloning, isolation, and characterization of novel chitinase-producing bacterial strain UM01 (Myxococcus fulvus). J Genet Eng Biotechnol. 2020;18:45. https://doi.org/10.1186/s43141-020-00059-1.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li Y, Liu L, Yang J, Yang Q. An overall look at insect chitin deacetylases: promising molecular targets for developing green pesticides. J Pestic Sci. 2021;46:43–52. https://doi.org/10.1584/jpestics.D20-085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rizzi YS, Happel P, Lenz S, Urs MJ, Bonin M, Cord-Landwehr S, Singh R, Moerschbacher BM, Kahmann R. Chitosan and chitin deacetylase activity are necessary for development and virulence of Ustilago maydis. MBio. 2021;2021:12. https://doi.org/10.1128/mBio.03419-20.

    Article  Google Scholar 

  34. Yang W-J, Xu K-K, Yan Y, Li C, Jin D-C. Role of chitin deacetylase 1 in the molting and metamorphosis of the cigarette beetle Lasioderma serricorne. Int J Mol Sci. 2020;21:2449. https://doi.org/10.3390/ijms21072449.

    Article  CAS  PubMed Central  Google Scholar 

  35. Dai M-D, Wu M, Li Y, Su Z-Z, Lin F-C, Liu X-H. The chitin deacetylase PoCda7 is involved in the pathogenicity of Pyricularia oryzae. Microbiol Res. 2021;248: 126749. https://doi.org/10.1016/j.micres.2021.126749.

    Article  CAS  PubMed  Google Scholar 

  36. Yu H-Z, Li N-Y, Li B, Toufeeq S, Xie Y-X, Huang Y-L, Du Y-M, Zeng X-D, Zhu B, Lu Z-J. Immune functional analysis of chitin deacetylase 3 from the asian citrus psyllid Diaphorina citri. Int J Mol Sci. 2019;21:64. https://doi.org/10.3390/ijms21010064.

    Article  CAS  PubMed Central  Google Scholar 

  37. Jiang Z, Lv X, Liu Y, Shin H-D, Li J, Du G, Liu L. Biocatalytic production of glucosamine from n-acetylglucosamine by diacetylchitobiose deacetylase. J Microbiol Biotechnol. 2018;28:1850–8. https://doi.org/10.4014/jmb.1805.05061.

    Article  CAS  PubMed  Google Scholar 

  38. Huang Z, Mao X, Lv X, Sun G, Zhang H, Lu W, Liu Y, Li J, Du G, Liu L. Engineering diacetylchitobiose deacetylase from Pyrococcus horikoshii towards an efficient glucosamine production. Bioresour Technol. 2021;334: 125241. https://doi.org/10.1016/j.biortech.2021.125241.

    Article  CAS  PubMed  Google Scholar 

  39. John M, Rohrig H, Schmidt J, Wieneke U, Schell J. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci. 1993;90:625–9. https://doi.org/10.1073/pnas.90.2.625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang Z, Niu T, Lv X, Liu Y, Li J, Lu W, Du G, Chen J, Liu L. Secretory expression fine-tuning and directed evolution of diacetylchitobiose deacetylase by Bacillus subtilis. Appl Environ Microbiol. 2019;2019:85. https://doi.org/10.1128/AEM.01076-19.

    Article  Google Scholar 

  41. Karbalaei M, Rezaee SA, Farsiani H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol. 2020;235:5867–81. https://doi.org/10.1002/jcp.29583.

    Article  CAS  PubMed  Google Scholar 

  42. Blair DE, van Aalten DMF. Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine. FEBS Lett. 2004;570:13–9. https://doi.org/10.1016/j.febslet.2004.06.013.

    Article  CAS  PubMed  Google Scholar 

  43. Blair DE, Schuttelkopf AW, MacRae JI, van Aalten DMF. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc Natl Acad Sci. 2005;102:15429–34. https://doi.org/10.1073/pnas.0504339102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blair DE, Hekmat O, Schüttelkopf AW, Shrestha B, Tokuyasu K, Withers SG, van Aalten DMF. Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum. Biochemistry. 2006;45:9416–26. https://doi.org/10.1021/bi0606694.

    Article  CAS  PubMed  Google Scholar 

  45. Nakamura AM, Nascimento AS, Polikarpov I. Structural diversity of carbohydrate esterases. Biotechnol Res Innov. 2017;1:35–51. https://doi.org/10.1016/j.biori.2017.02.001.

    Article  Google Scholar 

  46. Naqvi S, Cord-Landwehr S, Singh R, Bernard F, Kolkenbrock S, El Gueddari NE, Moerschbacher BM. A recombinant fungal chitin deacetylase produces fully defined chitosan oligomers with novel patterns of acetylation. Appl Environ Microbiol. 2016;82:6645–55. https://doi.org/10.1128/AEM.01961-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Andrés E, Albesa-Jové D, Biarnés X, Moerschbacher BM, Guerin ME, Planas A. Structural basis of chitin oligosaccharide deacetylation. Angew Chem Int Ed Engl. 2014;53:6882–7. https://doi.org/10.1002/anie.201400220.

    Article  CAS  PubMed  Google Scholar 

  48. Tokuyasu K, Mitsutomi M, Yamaguchi I, Hayashi K, Mori Y. Recognition of chitooligosaccharides and their N-acetyl groups by putative subsites of chitin deacetylase from a deuteromycete, Colletotrichum lindemuthianum. Biochemistry. 2000;39:8837–43. https://doi.org/10.1021/bi0005355.

    Article  CAS  PubMed  Google Scholar 

  49. Li X, Wang L-X, Wang X, Roseman S. The chitin catabolic cascade in the marine bacterium Vibrio Cholerae: characterization of a unique chitin oligosaccharide deacetylase. Glycobiology. 2007;17:1377–87. https://doi.org/10.1093/glycob/cwm096.

    Article  CAS  PubMed  Google Scholar 

  50. Kafetzopoulos D, Martinou A, Bouriotis V. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci. 1993;90:2564–8. https://doi.org/10.1073/pnas.90.7.2564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kadokura K, Sakamoto Y, Saito K, Ikegami T, Hirano T, Hakamata W, Oku T, Nishio T. Production of a recombinant chitin oligosaccharide deacetylase from Vibrio parahaemolyticus in the culture medium of Escherichia coli cells. Biotechnol Lett. 2007;29:1209. https://doi.org/10.1007/s10529-007-9386-6.

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka T, Fukui T, Fujiwara S, Atomi H, Imanaka T. Concerted action of diacetylchitobiose deacetylase and exo-β-d-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1*. J Biol Chem. 2004;279:30021–7. https://doi.org/10.1074/jbc.M314187200.

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Song J-Z, Yang Q, Liu Z-H, Huang X-M, Chen Y. Cloning of a heat-stable chitin deacetylase gene from Aspergillus nidulans and its functional expression in Escherichia coli. Appl Biochem Biotechnol. 2010;162:843–54. https://doi.org/10.1007/s12010-009-8772-z.

    Article  CAS  PubMed  Google Scholar 

  54. Xie M, Zhao X, Lü Y, Jin C. Chitin deacetylases Cod4 and Cod7 are involved in polar growth of Aspergillus fumigatus. Microbiol Open. 2020;9: e00943. https://doi.org/10.1002/mbo3.943.

    Article  Google Scholar 

  55. Hembach L, Bonin M, Gorzelanny C, Moerschbacher BM. Unique subsite specificity and potential natural function of a chitosan deacetylase from the human pathogen Cryptococcus neoformans. Proc Natl Acad Sci. 2020;117:3551–9. https://doi.org/10.1073/pnas.1915798117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mine S, Ikegami T, Kawasaki K, Nakamura T, Uegaki K. Expression, refolding, and purification of active diacetylchitobiose deacetylase from Pyrococcus horikoshii. Protein Expr Purif. 2012;84:265–9. https://doi.org/10.1016/j.pep.2012.06.002.

    Article  CAS  PubMed  Google Scholar 

  57. Zweers JC, Barák I, Becher D, Driessen AJ, Hecker M, Kontinen VP, Saller MJ, Vavrová L, van Dijl JM. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Factories. 2008;7:10. https://doi.org/10.1186/1475-2859-7-10.

    Article  CAS  Google Scholar 

  58. Roghayyeh B, Safar F, Younes G, Mojtaba M, Nosratollah Z, Naser S. New developments in pichia pastoris expression system, review and update. Curr Pharm Biotechnol. 2018;19:451–67.

    Article  Google Scholar 

  59. Wang Y, Niu X, Guo X, Yu H, Liu Z, Zhang Z, Yuan S. Heterologous expression, characterization and possible functions of the chitin deacetylases, Cda1 and Cda2, from mushroom Coprinopsis cinerea. Glycobiology. 2018;28:318–32. https://doi.org/10.1093/glycob/cwy007.

    Article  CAS  PubMed  Google Scholar 

  60. Liu L, Qu M, Liu T, Chen Q, Guo X, Yang J, Yang Q. Biochemical characterization of three midgut chitin deacetylases of the Lepidopteran insect Bombyx mori. J Insect Physiol. 2019;113:42–8. https://doi.org/10.1016/j.jinsphys.2019.01.005.

    Article  CAS  PubMed  Google Scholar 

  61. Dusan P, Shina C. Molecular modeling of conformational dynamics and its role in enzyme evolution. Curr Opin Struct Biol. 2018;52:50–7. https://doi.org/10.1021/j.sbi.2018.08.004.

    Article  PubMed  Google Scholar 

  62. Musil M, Konegger H, Hon J, Bednar D, Damborsky J. Computational design of stable and soluble biocatalysts. ACS Catal. 2019;9(2):1033–54. https://doi.org/10.1021/acscatal.8b03613.

    Article  CAS  Google Scholar 

  63. Cadwell RC, Joyce GF. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 1992;2:28–33. https://doi.org/10.1101/gr.2.1.28.

    Article  CAS  PubMed  Google Scholar 

  64. Wang W, Malcolm BA. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange site-directed mutagenesis. Biotechniques. 1999;26:680–2. https://doi.org/10.2144/99264st03.

    Article  CAS  PubMed  Google Scholar 

  65. Li G, Zhang H, Sun Z, Liu X, Reetz MT. Multiparameter optimization in directed evolution: engineering thermostability, enantioselectivity, and activity of an epoxide hydrolase. ACS Catal. 2016;6(6):3679–87. https://doi.org/10.1021/acscatal.6b01113.

    Article  CAS  Google Scholar 

  66. Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed Engl. 2005;44:4192–6. https://doi.org/10.1002/anie.200500767.

    Article  CAS  PubMed  Google Scholar 

  67. Pascual S, Planas A. Screening assay for directed evolution of chitin deacetylases: application to vibrio cholerae deacetylase mutant libraries for engineered specificity. Anal Chem. 2018;90:10654–8. https://doi.org/10.1021/acs.analchem.8b02729.

    Article  CAS  PubMed  Google Scholar 

  68. Dinmukhamed T, Huang Z, Liu Y, Lv X, Li J, Du G, Liu L. Current advances in design and engineering strategies of industrial enzymes. Syst Microbiol Biomanuf. 2021;2021:15–23. https://doi.org/10.1007/s43393-020-00005-9.

    Article  Google Scholar 

  69. Pang C, Yin X, Zhang G, Liu S, Zhou J, Li J, Du G. Current progress and prospects of enzyme technologies in future foods. Syst Microbiol Biomanuf. 2021;1:24–32. https://doi.org/10.1007/s43393-020-00008-6.

    Article  Google Scholar 

  70. Madeira F, Park Y, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey A, Potter S, Finn R, Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:636–41. https://doi.org/10.1093/nar/gkz268.

    Article  CAS  Google Scholar 

  71. El-Gebali S, Mistry J, Bateman A, Eddy S, Luciani A, Potter S, Qureshi M, Richardson L, Salazar G, Smart A, Sonnhammer E, Hirsh L, Paladin L, Piovesan D, Tosatto S, Finn R. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:427–32. https://doi.org/10.1093/nar/gky995.

    Article  CAS  Google Scholar 

  72. Kho J, Pham PC, Kwon S, Huang AY, Rivers JP, Wang H, Ecroyd H, Donald WA, McAlpine SRD. novo design, synthesis, and mechanistic evaluation of short peptides that mimic heat shock protein 27 activity. ACS Med Chem Lett. 2021;12:713–9. https://doi.org/10.1021/acsmedchemlett.0c00609.

    Article  CAS  PubMed  Google Scholar 

  73. Zanghellini A. De novo computational enzyme design. Curr Opin Biotech. 2014;29:132–8. https://doi.org/10.1016/j.copbio.2014.03.002.

    Article  CAS  PubMed  Google Scholar 

  74. Leaver-Fay A, Tyka M, Lewis S, Lange O, Bradley P. Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487(11):545–74. https://doi.org/10.1016/B978-0-12-381270-4.00019-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stoddard B. Computational design of ligand binding proteins. Methods Mol Biol. 2016;2016:23–32. https://doi.org/10.1007/978-1-4939-6637-0_19.

    Article  CAS  Google Scholar 

  76. Ludwiczak J, Jarmula A, Dunin-Horkawicz S. Combining Rosetta with molecular dynamics (MD): a benchmark of the MD-based ensemble protein design. J Struct Biol. 2018;203(1):54–61. https://doi.org/10.1016/j.jsb.2018.02.004.

    Article  CAS  PubMed  Google Scholar 

  77. Sinha R, Shukla P. Current trends in protein engineering: updates and progress. Curr Protein Pept Sci. 2019;20:398–407. https://doi.org/10.2174/1389203720666181119120120.

    Article  CAS  PubMed  Google Scholar 

  78. Lu X, Liu Y, Yang Y, Wang S, Wang Q, Wang X, Yan Z, Cheng J, Liu C, Yang X. Constructing a synthetic pathway for acetyl-coenzyme a from one-carbon through enzyme design. Nat Commun. 2019;10:1378. https://doi.org/10.1038/s41467-019-09095-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsigos I, Bouriotis V. Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum. J Biol Chem. 1995;270:26286–91. https://doi.org/10.1074/jbc.270.44.26286.

    Article  CAS  PubMed  Google Scholar 

  80. Gilbert NM, Baker LG, Specht CA, Lodge JK. A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans. MBio. 2012;3:1. https://doi.org/10.1128/mBio.00007-12.

    Article  CAS  Google Scholar 

  81. Xu Q, Wang J, Zhao J, Xu J, Sun S, Zhang H, Wu J, Tang C, Kang Z, Wang X. A polysaccharide deacetylase from Puccinia striiformis f. sp. tritici is an important pathogenicity gene that suppresses plant immunity. Plant Biotechnol J. 2020;18:1830–42. https://doi.org/10.1111/pbi.13345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hole CR, Lam WC, Upadhya R, Lodge JK. Cryptococcus neoformans chitin synthase 3 plays a critical role in dampening host inflammatory responses. MBio. 2020;2020:11. https://doi.org/10.1128/mBio.03373-19.

    Article  Google Scholar 

  83. Upadhya R, Baker LG, Lam WC, Specht CA, Donlin MJ, Lodge JK. Cryptococcus neoformans cda1 and its chitin deacetylase activity are required for fungal pathogenesis. MBio. 2018;2018:9. https://doi.org/10.1128/mBio.02087-18.

    Article  Google Scholar 

  84. Nahar P, Ghormade V, Deshpande MV. The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J Invertebr Pathol. 2004;85:80–8. https://doi.org/10.1016/j.jip.2003.11.006.

    Article  CAS  PubMed  Google Scholar 

  85. Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SAA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596:590–6. https://doi.org/10.1038/s41586-021-03828-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Urch JE, Hurtado-Guerrero R, Brosson D, Liu Z, Eijsink VGH, Texier C, van Aalten DMF. Structural and functional characterization of a putative polysaccharide deacetylase of the human parasite Encephalitozoon cuniculi: characterization of polysaccharide deacetylase. Protein Sci. 2009;18:1197–209. https://doi.org/10.1002/pro.128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tuveng TR, Rothweiler U, Udatha G, Vaaje-Kolstad G, Smalås A, Eijsink VGH. Structure and function of a CE4 deacetylase isolated from a marine environment. PLoS ONE. 2017;12:e0187544. https://doi.org/10.1371/journal.pone.0187544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chai J, Hang J, Zhang C, Yang J, Wang S, Liu S, Fang Y. Purification and characterization of chitin deacetylase active on insoluble chitin from Nitratireductor aquimarinus MCDA3-3. Int J Biol Macromol. 2020;152:922–9. https://doi.org/10.1016/j.ijbiomac.2020.02.308.

    Article  CAS  PubMed  Google Scholar 

  89. Chambon R, Pradeau S, Fort S, Cottaz S, Armand S. High yield production of Rhizobium NodB chitin deacetylase and its use for in vitro synthesis of lipo-chitinoligosaccharide precursors. Carbohydr Res. 2017;442:25–30. https://doi.org/10.1016/j.carres.2017.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma Q, Gao X, Bi X, Tu L, Xia M, Shen Y, Wang M. Isolation, characterisation, and genome sequencing of Rhodococcus equi: a novel strain producing chitin deacetylase. Sci Rep. 2020;10:4329. https://doi.org/10.1038/s41598-020-61349-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hirano T, Okubo M, Tsuda H, Yokoyama M, Hakamata W, Nishio T. Chitin heterodisaccharide, released from chitin by chitinase and chitin oligosaccharide deacetylase, enhances the chitin-metabolizing ability of Vibrio parahaemolyticus. J Bacteriol. 2019;2019:201. https://doi.org/10.1128/JB.00270-19.

    Article  Google Scholar 

  92. Liu Z, Gay LM, Tuveng TR, Agger JW, Westereng B, Mathiesen G, Horn SJ, Vaaje-Kolstad G, van Aalten DMF, Eijsink VGH. Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4. Sci Rep. 2017;7:1746. https://doi.org/10.1038/s41598-017-02043-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lam WC, Upadhya R, Specht CA, Ragsdale AE, Hole CR, Levitz SM, Lodge JK. Chitosan biosynthesis and virulence in the human fungal pathogen Cryptococcus gattii. mSphere. 2019;2019:4. https://doi.org/10.1128/mSphere.00644-19.

    Article  Google Scholar 

  94. Yang X-B, Zhou C, Gong M-F, Yang H, Long G-Y, Jin D-C. Identification and rnai-based functional analysis of four chitin deacetylase genes in Sogatella furcifera (Hemiptera: Delphacidae). J Insect Sci. 2021;21:9. https://doi.org/10.1093/jisesa/ieab051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Program of China (2018YFA0900300), the National Natural Science Foundation of China (32021005, 31870069), the Fundamental Research Funds for the Central Universities (JUSRP52019A, JUSRP121010, JUSRP221013), and Shandong Province Key R & D Program (Major Science and Technology Innovation Project) Project (2019JZZY011002).

Author information

Authors and Affiliations

Authors

Contributions

LL conceived and designed the manuscript. ZYH provided and analyzed literature, wrote the manuscript. XZM and GYS compiled the references and prepared the figures. XQL and LL revising the manuscript, HZZ, WL, YFL, JHL and GCD were responsible for revising and supervising. All authors read and approved the manuscript.

Corresponding author

Correspondence to Long Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Lv, X., Sun, G. et al. Chitin deacetylase: from molecular structure to practical applications. Syst Microbiol and Biomanuf 2, 271–284 (2022). https://doi.org/10.1007/s43393-022-00077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00077-9

Keywords

Navigation