Skip to main content
Log in

Metabolic engineering of Escherichia coli for the production of Lacto-N-neotetraose (LNnT)

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Lacto-N-neotetraose (LNnT), one of the most important human milk oligosaccharides, can be used as infants’ food additives. Nowadays, extraction, chemical and biological synthesis were utilized to obtain LNnT, while these methods still face some problems such as low yield and high cost. The aim of current work is to construct a de novo biosynthesis pathway of LNnT in E. coli K12 MG1655. The lgtA and lgtB were first expressed by a plasmid, resulting in a LNnT titer of 0.04 g/L. To improve the yield of LNnT on substrate lactose, lacZ and lacI were knocked out, and lacY was over-expressed. As a result, the yield of LNnT on lactose increased from 0.01 to 0.09 mol/mol, and the titer of LNnT elevated to 0.41 g/L. In addition, the pathway was regulated using the titer of Lacto-N-triose II (LNTII) as a measure, and obtained a high titer strain of LNnT for 1.04 g/L. Finally, the gene expressions were fine-tuned, the titer of LNnT reached 1.2 g/L, which was 93% higher than the control strain, and the yield on lactose reached 0.28 mol/mol. The engineering strategy of pathway construction and modulation used in this study is applicable to facilitate the microbial production of other metabolites in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. German JB, Freeman SL, Lebrilla CB, Mills DA. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. In: Personalized nutrition for the diverse needs of infants and children; KARGER: Basel, 2008; pp. 205–22.

  2. Duska-McEwen G, Senft AP, Ruetschilling TL, Barrett EG, Buck RH. Human milk oligosaccharides enhance innate immunity to respiratory syncytial virus and influenza in vitro. Food Nutr Sci. 2014;05:1387–98.

    Google Scholar 

  3. Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, Murch S, Sankar MJ, Walker N, Rollins NC, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387:475–90.

    Article  Google Scholar 

  4. Chen R. The sweet branch of metabolic engineering: cherry-picking the low-hanging sugary fruits. Microb Cell Fact. 2015;14:1–10.

    Article  Google Scholar 

  5. Sprenger N, Lee LY, De Castro CA, Steenhout P, Thakkar SK. Longitudinal change of selected human milk oligosaccharides and association to infants’ growth, an observatory, single center, longitudinal cohort study. PLoS ONE. 2017;12:1–15.

    Google Scholar 

  6. Coppa GV, Pierani P, Zampini L, Bruni S, Carloni I, Gabrielli O. Characterization of oligosaccharides in milk and feces of breast-fed infants by high-performance anion-exchange chromatography. Adv Exp Med Biol. 2001;501:307–14.

    Article  CAS  Google Scholar 

  7. Petschacher B, Nidetzky B. Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J Biotechnol. 2016;235:61–83.

    Article  CAS  Google Scholar 

  8. Vandenplas Y, Berger B, Carnielli VP, Ksiazyk J, Lagstrom H, Luna SM, Migacheva N, Mosselmans J-M, Picaud J-C, Possner M, et al. Human milk oligosaccharides: 2-fucosyllactose (2-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients. 2018;10:1161.

    Article  Google Scholar 

  9. Elison E, Vigsnaes LK, Krogsgaard RL, Rasmussen J, Sorensen N, McConnell B, Hennet T, Sommer MOA, Bytzer P. Oral supplementation of healthy adults with 2′-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr. 2016;116:1356–68.

    Article  CAS  Google Scholar 

  10. Huang D, Yang K, Liu J, Xu Y, Wang Y, Wang R, Liu B, Feng L. Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metab Eng. 2017;41:23–38.

    Article  CAS  Google Scholar 

  11. Hollands K, Baron CM, Gibson KJ, Kelly KJ, Krasley EA, Laffend LA, Lauchli RM, Maggio-Hall LA, Nelson MJ, Prasad JC, et al. Engineering two species of yeast as cell factories for 2′-fucosyllactose. Metab Eng. 2019;52:232–42.

    Article  CAS  Google Scholar 

  12. Soo N, Kim T, Park Y-C, Kim J, Seo J-H, Han NS, Kim T, Park Y-C, Kim J, Seo J-H. Biotechnological production of human milk oligosaccharides. Biotechnol Adv. 2012;30:1268–78.

    Article  Google Scholar 

  13. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. Breast milk oligosaccharides: Structure-function relationships in the neonate. Annu Rev Nutr. 2014;34:143–69.

    Article  CAS  Google Scholar 

  14. Priem B, Gilbert M, Wakarchuk WW, Heyraud A, Samain E. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. Glycobiology. 2002;12:235–40.

    Article  CAS  Google Scholar 

  15. Bode L. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr. 2006;136:2127–30.

    Article  CAS  Google Scholar 

  16. Sprenger GA, Baumgärtner F, Albermann C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol. 2017;258:79–91.

    Article  CAS  Google Scholar 

  17. Jin W, Zhang F, Linhardt RJ. Bioengineered production of glycosaminoglycans and their analogues. Syst Microbiol Biomanuf. 2020;1:1–8.

  18. Deng J, Lv X, Li J, Du G, Chen J, Liu L. Recent advances and challenges in microbial production of human milk oligosaccharides. Syst Microbiol Biomanufacturing. 2020;1:3.

    Google Scholar 

  19. Bych K, Mikš MH, Johanson T, Hederos MJ, Vigsnæs LK, Becker P. Production of HMOs using microbial hosts—from cell engineering to large scale production. Curr Opin Biotechnol. 2019;56:130–7.

    Article  CAS  Google Scholar 

  20. Jennings MP, Hood DW, Peak LRA, Virji M, Moxon ER. Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol Microbiol. 1995;18:729–40.

    Article  CAS  Google Scholar 

  21. Heyraud A, Priem B, Dumon C, Bosso C, Martin LS. In vivo fucosylation of lacto-N-neotetraose and lacto-N-neohexaose by heterologous expression of Helicobacter pylori a-1,3 fucosyltransferase in engineered Escherichia coli. Glycoconj J. 2001;6:465–474.

    Google Scholar 

  22. Dong X, Li N, Liu Z, Lv X, Li J, Du G, Wang M, Liu L. Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis. Biotechnol Biofuels. 2019;12:1–11.

    Article  Google Scholar 

  23. Dong X, Li N, Liu Z, Lv X, Shen Y, Li J, Du G, Wang M, Liu L. CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis. J Agric Food Chem. 2020;68:2477–84.

    Article  CAS  Google Scholar 

  24. Baumgartner F, Conrad J, Sprenger GA, Albermann C. Synthesis of the human milk oligosaccharide lacto-N-tetraose in metabolically engineered, plasmid-free E. coli. ChemBioChem. 2014;15:1896–900.

    Article  Google Scholar 

  25. Jung SM, Park YC, Seo JH. Production of 3-fucosyllactose in engineered Escherichia coli with α-1,3-fucosyltransferase from Helicobacter pylori. Biotechnol J. 2019;14:1–7.

    Article  CAS  Google Scholar 

  26. Wood EJ. Molecular cloning. A laboratory manual by T Maniatis, E F Fritsch and J Sambrook. New York: Cold Spring Harbor Laboratory; 1982. p. 545.

    Google Scholar 

  27. Chung ME, Yeh IH, Sung LY, Wu MY, Chao YP, Ng IS, Hu YC. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol Bioeng. 2017;114:172–83.

    Article  CAS  Google Scholar 

  28. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81:2506–14.

    Article  CAS  Google Scholar 

  29. Englaender JA, Jones JA, Cress BF, Kuhlman TE, Linhardt RJ, Koffas MAG. Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli. ACS Synth Biol. 2017;6:710–20.

    Article  CAS  Google Scholar 

  30. Juhas M, Evans LDB, Frost J, Davenport PW, Yarkoni O, Fraser GM, Ajioka JW. Escherichia coli flagellar genes as target sites for integration and expression of genetic circuits. PLoS ONE. 2014;9:1–7.

    Article  Google Scholar 

  31. Sabri S, Steen JA, Bongers M, Nielsen LK, Vickers CE. Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci. Microb Cell Fact. 2013;12:1–15.

    Article  Google Scholar 

  32. Juhas M, Ajioka JW. Lambda Red recombinase-mediated integration of the high molecular weight DNA into the Escherichia coli chromosome. Microb Cell Fact. 2016;15:1–10.

    Article  Google Scholar 

  33. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 2013;8:2180–96.

    Article  CAS  Google Scholar 

  34. Gu L, Yuan H, Lv X, Li G, Cong R, Li J, Du G, Liu L. High-yield and plasmid-free biocatalytic production of 5-methylpyrazine-2-carboxylic acid by combinatorial genetic elements engineering and genome engineering of Escherichia coli. Enzyme Microb Technol. 2020;134:109488.

    Article  CAS  Google Scholar 

  35. Hossain GS, Li J, Shin HD, Chen RR, Du G, Liu L, Chen J. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. J Biotechnol. 2014;169:112–20.

    Article  CAS  Google Scholar 

  36. Albermann C, Piepersberg W, Wehmeier UF. Synthesis of the milk oligosaccharide 2′-fucosyllactose using recombinant bacterial enzymes. Carbohydr Res. 2001;334:97–103.

    Article  CAS  Google Scholar 

  37. Chin YW, Kim JY, Lee WH, Seo JH. Enhanced production of 2’-fucosyllactose in engineered Escherichia coli BL21star(DE3) by modulation of lactose metabolism and fucosyltransferase. J Biotechnol. 2015;210:107–15.

    Article  CAS  Google Scholar 

  38. Baumgärtner F, Jurzitza L, Conrad J, Beifuss U, Sprenger GA, Albermann C. Synthesis of fucosylated lacto-N-tetraose using whole-cell biotransformation. Bioorganic Med Chem. 2015;23:6799–806.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31930085, 32021005), and the key research and development program of China (2018YFA0900300, 2020YFA0908300).

Author information

Authors and Affiliations

Authors

Contributions

WZ has a major contribution to the study, and writing of the manuscript. ZML, GMY, NL and XQL analyzed the experimental data. XMD, LYF, LJH and DGC revised the manuscript. LL conceived and supervised the project and contributed to the writing of the manuscript. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Zhenmin Liu or Long Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, Z., Gong, M. et al. Metabolic engineering of Escherichia coli for the production of Lacto-N-neotetraose (LNnT). Syst Microbiol and Biomanuf 1, 291–301 (2021). https://doi.org/10.1007/s43393-021-00023-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00023-1

Keywords

Navigation