Skip to main content
Log in

Recent advances and challenges in microbial production of human milk oligosaccharides

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Human milk oligosaccharides (HMOs) are one of the major differences between livestock milk and human milk, and the prebiotic functions of HMOs have been verified through in vitro and clinical trials. The most abundant HMOs include 2′-fucysollactose (2′-FL), 3-fucosyllactose (3-FL), lacto-N-neotetraose (LNnT) and lacto-N-tetraose (LNT); their application and synthesis have attracted wide attentions. In recent years, the biotechnological production of 2′-FL, 3-FL, LNnT and LNT have emerged based on techniques such as whole-cell catalysis and fermentation. In particular, the development of metabolic engineering and synthetic biology methods and strategies have facilitated efficient biosynthesis of these HMOs. However, these advantages have not been systematically reviewed yet. In this review, we first discuss the structures and applications of HMOs; secondly, strategies of microbial synthesis of the most abundant 2′-FL, 3-FL, LNnT and LNT are summarized and compared. Finally, challenges and perspectives of efficient microbial production of HMOs as well as strategies for overcoming the challenges are discussed. This review reveals the whole picture of recent development in HMOs microbial synthesis and can further facilitate the understanding of limiting factors, and further propose a few directions to promote the development of efficient production hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vandenplas Y, Berger B, Carnielli VP, Ksiazyk J, Lagström H, Luna MS, et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-n-neotetraose (LNnT) in infant formula. Nutrients. 2018;10:E1161.

    PubMed  Google Scholar 

  2. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22:1147–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bode L, Contractor N, Barile D, Pohl N, Prudden AR, Boons GJ, et al. Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application. Nutr Rev. 2016;74:635–44.

    PubMed  PubMed Central  Google Scholar 

  4. Holscher HD, Davis SR, Tappenden KA. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J Nutr. 2014;144:586–91.

    CAS  PubMed  Google Scholar 

  5. Azad MB, Robertson B, Atakora F, Becker AB, Subbarao P, Moraes TJ, et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J Nutr. 2018;148:1733–42.

    PubMed  Google Scholar 

  6. Chaturvedi P, Warren CD, Altaye M, Morrow AL, Ruiz-Palacios G, Pickering LK, et al. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology. 2001;11:365–72.

    CAS  PubMed  Google Scholar 

  7. Goehring KC, Kennedy AD, Prieto PA, Buck RH. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS ONE. 2014;9:1–11.

    Google Scholar 

  8. Rudloff S, Kunz C. Milk oligosaccharides and metabolism. Adv Nutr. 2012;3:398–405.

    Google Scholar 

  9. Mu B. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br J Nutr. 2010;104:1261–71.

    Google Scholar 

  10. Kunz C. Historical aspects of human milk oligosaccharides. Adv Nutr. 2012;3:430S–9S.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hegar B, Wibowo Y, Basrowi RW, Ranuh RG, Sudarmo SM, Munasir Z, et al. The role of two human milk oligosaccharides, 2′-fucosyllactose and lacto-N-neotetraose, in infant nutrition. Pediatr Gastroenterol Hepatol Nutr. 2019;22:330–40.

    PubMed  PubMed Central  Google Scholar 

  12. Castanys-Muñoz E, Martin MJ, Prieto PA. 2′-fucosyllactose: an abundant, genetically determined soluble glycan present in human milk. Nutr Rev. 2013;71:773–89.

    PubMed  Google Scholar 

  13. Tao N, DePeters EJ, Freeman S, German JB, Grimm R, Lebrilla CB. Bovine milk glycome. J Dairy Sci. 2008;91:3768–78.

    CAS  PubMed  Google Scholar 

  14. Reverri E, Devitt A, Kajzer J, Baggs G, Borschel M. Review of the clinical experiences of feeding infants formula containing the human milk oligosaccharide 2′-fucosyllactose. Nutrients. 2018;10:E1346.

    PubMed  Google Scholar 

  15. Donovan SM, Comstock SS. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann Nutr Metab. 2017;69:42–51.

    PubMed Central  Google Scholar 

  16. Weichert S, Jennewein S, Hüfner E, Weiss C, Borkowski J, Putze J, et al. Bioengineered 2′- fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr Res. 2013;33:831–8.

    CAS  PubMed  Google Scholar 

  17. Elison E, Vigsnaes LK, Rindom Krogsgaard L, Rasmussen J, Sorensen N, McConnell B, et al. Oral supplementation of healthy adults with 2′-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. Br J Nutr. 2016;116:1356–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. James K, Motherway MOC, Bottacini F, Van Sinderen D. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Sci Rep. 2016;6:38560.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Özcan E, Sela DA. Inefficient metabolism of the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose shifts Bifidobacterium longum subsp. infantis physiology. Front Nutr. 2018;5:46.

    PubMed  PubMed Central  Google Scholar 

  20. Puccio G, Alliet P, Cajozzo C, Janssens E, Corsello G, Sprenger N, et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J Pediatr Gastroenterol Nutr. 2017;64:624–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr. 2000;71:1589–96.

    CAS  PubMed  Google Scholar 

  22. Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-zavaglia A. Technological aspects of the production of fructo and enzymatic synthesis and hydrolysis. Front Nutr. 2019;6:78.

    PubMed  PubMed Central  Google Scholar 

  23. Romano N, Santos M, Mobili P, Vega R, Gómez-zavaglia A. Effect of sucrose concentration on the composition of enzymatically synthesized short-chain fructo-oligosaccharides as determined by FTIR and multivariate analysis. Food Chem. 2016;202:467–75.

    CAS  PubMed  Google Scholar 

  24. Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A. Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochem. 2011;46:245–52.

    CAS  Google Scholar 

  25. Trial C, Goehring KC, Marriage BJ, Oliver JS, Wilder JA, Barrett EG, et al. Similar to those who are breastfed, infants fed a formula containing 2′-fucosyllactose have lower inflammatory cytokines in a randomized. Nutr Immunol. 2016;12:4–11.

    Google Scholar 

  26. Marriage BJ, Buck RH, Goehring KC, Oliver JS, Williams JA. Infants fed a lower calorie formula with 2′-FL show growth and 2′-FL uptake like breast-fed infants. J Pediatr Gastroenterol. 2015;61:649–58.

    CAS  Google Scholar 

  27. Bych K, Mikš MH, Johanson T, Hederos MJ, Vigsnæs LK, Becker P. Production of HMOs using microbial hosts—from cell engineering to large scale production. Curr Opin Biotechnol. 2019;56:130–7.

    CAS  PubMed  Google Scholar 

  28. Sprenger GA, Baumgärtner F, Albermann C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol. 2017;258:79–91.

    CAS  PubMed  Google Scholar 

  29. Oliveira DL, Wilbey RA, Grandison AS, Roseiro LB. Milk oligosaccharides: a review. Int J Dairy Technol. 2015;68:305–21.

    CAS  Google Scholar 

  30. Petschacher B, Nidetzky B. Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J Biotechnol. 2016;235:61–83.

    CAS  PubMed  Google Scholar 

  31. Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv. 2019;37:667–97.

    CAS  PubMed  Google Scholar 

  32. Hsu CH, Chu KC, Lin YS, Han JL, Peng YS, Ren CT, et al. Highly alpha-selective sialyl phosphate donors for efficient preparation of natural sialosides. Chem A Eur J. 2010;16:1754–60.

    CAS  Google Scholar 

  33. Byun SG, Kim MD, Lee WH, Lee KJ, Han NS, Seo JH. Production of GDP-l-fucose, l-fucose donor for fucosyloligosaccharide synthesis, in recombinant Escherichia coli. Appl Microbiol Biotechnol. 2007;74:768–75.

    CAS  PubMed  Google Scholar 

  34. Liu TW, Ito H, Chiba Y, Kubota T, Sato T, Narimatsu H. Functional expression of l-fucokinase/guanosine 5′-diphosphate-l-fucose pyrophosphorylase from Bacteroides fragilis in Saccharomyces cerevisiae for the production of nucleotide sugars from exogenous monosaccharides. Glycobiology. 2011;21:1228–366.

    CAS  PubMed  Google Scholar 

  35. Tonetti M, Sturla L, Bisso A, Benatti U, De Flora A. Synthesis of GDP-l-fucose by the human FX protein. J Biol Chem. 1996;271:27274–9.

    CAS  PubMed  Google Scholar 

  36. Coyne MJ, Reinap B, Lee MM, Comstock LE. Human symbionts use a host-like pathway for surface fucosylation. Science. 2005;307:1778–811.

    CAS  PubMed  Google Scholar 

  37. Chin YW, Seo N, Kim JH, Seo JH. Metabolic engineering of Escherichia coli to produce 2′-fucosyllactose via salvage pathway of guanosine 5′-diphosphate (GDP)-l-fucose. Biotechnol Bioeng. 2016;113:2443–522.

    CAS  PubMed  Google Scholar 

  38. Huang D, Yang K, Liu J, Xu Y, Wang Y, Wang R, et al. Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement. Metab Eng. 2017;41:23–38.

    CAS  PubMed  Google Scholar 

  39. Shen X, Wang J, Wang J, Chen Z, Yuan Q, Yan Y. High-level de novo biosynthesis of arbutin in engineered Escherichia coli. Metab Eng. 2017;42:52–8.

    CAS  PubMed  Google Scholar 

  40. Drouillard S, Driguez H, Samain E. Large-scale synthesis of H-antigen oligosaccharides by expressing Helicobacter pylori α1,2-fucosyltransferase in metabolically engineered Escherichia coli cells. Angew Chemie Int Ed. 2006;45:1778–800.

    CAS  Google Scholar 

  41. Lee WH, Pathanibul P, Quarterman J, Jo JH, Han NS, Miller MJ, et al. Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli. Microb Cell Fact. 2012;11:48–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Baumgärtner F, Seitz L, Sprenger GA, Albermann C. Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose. Microb Cell Fact. 2013;12:40.

    PubMed  PubMed Central  Google Scholar 

  43. Chin YW, Kim JY, Kim JH, Jung SM, Seo JH. Improved production of 2′-fucosyllactose in engineered Escherichia coli by expressing putative α-1,2-fucosyltransferase WcfB from Bacteroides fragilis. J Biotechnol. 2017;257:192–8.

    CAS  PubMed  Google Scholar 

  44. Jung SM, Chin YW, Lee YG, Seo JH. Enhanced production of 2′-fucosyllactose from fucose by elimination of rhamnose isomerase and arabinose isomerase in engineered Escherichia coli. Biotechnol Bioeng. 2019;116:2412–7.

    CAS  PubMed  Google Scholar 

  45. Seo JH, Chin YW, Jo HY. Method of producing 2′-fucosyllactose using Corynebacterium glutamicum. Patent US 20180298389, 18 October 2018.

  46. Yu S, Liu JJ, Yun EJ, Kwak S, Kim KH, Jin YS. Production of a human milk oligosaccharide 2′-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact. 2018;17:101–11.

    PubMed  PubMed Central  Google Scholar 

  47. Liu JJ, Kwak S, Pathanibul P, Lee JW, Yu S, Yun EJ, et al. Biosynthesis of a functional human milk oligosaccharide, 2′-fucosyllactose, and l-fucose using engineered Saccharomyces cerevisiae. ACS Synth Biol. 2018;7:2529–36.

    CAS  PubMed  Google Scholar 

  48. Hollands K, Baron CM, Gibson KJ, Kelly KJ, Krasley EA, Laffend LA, et al. Engineering two species of yeast as cell factories for 2′-fucosyllactose. Metab Eng. 2019;52:232–42.

    CAS  PubMed  Google Scholar 

  49. Deng J, Chen C, Gu Y, Lv X, Liu Y, Li J. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis. Metab Eng. 2019;55:179–90.

    CAS  PubMed  Google Scholar 

  50. Deng J, Gu L, Chen T, Huang H, Yin X, Lv X, et al. Engineering the substrate transport and cofactor regeneration systems for enhancing 2′-fucosyllactose synthesis in Bacillus subtilis. ACS Synth Biol. 2019;8:2418–27.

    CAS  PubMed  Google Scholar 

  51. Jung SM, Park YC, Seo JH. Production of 3-fucosyllactose in engineered Escherichia coli with α-1,3-fucosyltransferase from Helicobacter pylori. Biotechnol J. 2019;14:e1800498.

    PubMed  Google Scholar 

  52. Yu J, Shin J, Park M, Seydametova E, Jung SM, Seo JH, et al. Engineering of α-1,3-fucosyltransferases for production of 3-fucosyllactose in Escherichia coli. Metab Eng. 2018;48:269–78.

    CAS  PubMed  Google Scholar 

  53. Tan Y, Zhang Y, Han Y, Liu H, Chen H, Ma F, et al. Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method. Sci Adv. 2019;5:eaaw8451.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu J, Zheng M, Zhang C, Xu D. Amide resonance in the catalysis of 1,2-α-l-fucosidase from bifidobacterium bifidum. J Phys Chem B. 2013;117:10080–92.

    CAS  PubMed  Google Scholar 

  55. Nagae M, Tsuchiya A, Katayama T, Yamamoto K, Wakatsuki S, Kato R. Structural basis of the catalytic reaction mechanism of novel 1,2-α-l-fucosidase from Bifidobacterium bifidum. J Biol Chem. 2007;282:18497–509.

    CAS  PubMed  Google Scholar 

  56. Liu JJ, Lee JW, Yun EJ, Jung SM, Seo JH, Jin YS. l-Fucose production by engineered Escherichia coli. Biotechnol Bioeng. 2019;116:904–11.

    CAS  PubMed  Google Scholar 

  57. Priem B, Gilbert M, Wakarchuk WW, Heyraud A, Samain E. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. Glycobiology. 2002;12:235–40.

    CAS  PubMed  Google Scholar 

  58. Baumgärtner F, Conrad J, Sprenger GA, Albermann C. Synthesis of the human milk oligosaccharide lacto-N-tetraose in metabolically engineered, plasmid-free E. coli. ChemBioChem. 2014;15:1896–900.

    PubMed  Google Scholar 

  59. Dong X, Li N, Liu Z, Lv X, Li J, Du G, et al. Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis. Biotechnol Biofuels. 2019;12:212.

    PubMed  PubMed Central  Google Scholar 

  60. Dong X, Li N, Liu Z, Lv X, Shen Y, Li J, et al. CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis. J Agric Food Chem. 2020;68:2477–84.

    CAS  PubMed  Google Scholar 

  61. Linares DM, Geertsma ER, Poolman B. Evolved Lactococcus lactis strains for enhanced expression of recombinant membrane proteins. J Mol Biol. 2010;401:45–55.

    CAS  PubMed  Google Scholar 

  62. Tavoulari S, Frillingos S. Substrate selectivity of the melibiose permease (MelY) from Enterobacter cloacae. J Mol Biol. 2008;376:681–93.

    CAS  PubMed  Google Scholar 

  63. Andersen JM, Barrangou R, Abou Hachem M, Lahtinen S, Goh YJ, Svensson B, et al. Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus. Proc Natl Acad Sci. 2011;108:17785–90.

    CAS  PubMed  Google Scholar 

  64. Wu Y, Chen T, Liu Y, Lv X, Li J, Du G, et al. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab Eng. 2018;49:232–41.

    CAS  PubMed  Google Scholar 

  65. Jung IY, Lee JW, Min WK, Park YC, Seo JH. Simultaneous conversion of glucose and xylose to 3-hydroxypropionic acid in engineered Escherichia coli by modulation of sugar transport and glycerol synthesis. Bioresour Technol. 2015;198:709–16.

    CAS  PubMed  Google Scholar 

  66. Zhang X, Liu Y, Liu L, Li J, Du G, Chen J. Microbial production of sialic acid and sialylated human milk oligosaccharides: advances and perspectives. Biotechnol Adv. 2019;37:787–800.

    CAS  PubMed  Google Scholar 

  67. Gupta A, Reizman IMB, Reisch CR, Prather KLJ. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol. 2017;35:273–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gu P, Yang F, Su T, Wang Q, Liang Q, Qi Q. A rapid and reliable strategy for chromosomal integration of gene(s) with multiple copies. Sci Rep. 2015;5:9684.

    PubMed  PubMed Central  Google Scholar 

  69. Albermann C, Piepersberg W, Wehmeier UF. Synthesis of the milk oligosaccharide 2′-fucosyllactose using recombinant bacterial enzymes. Carbohydr Res. 2001;334:97–103.

    CAS  PubMed  Google Scholar 

  70. Merighi M, McCoy JM, Heidtman M. Biosynthesis of human milk oligosaccharides in engineered bacteria. Patent WO 2012/112777, 23 August 2012.

  71. Chin YW, Kim JY, Lee WH, Seo JH. Enhanced production of 2′-fucosyllactose in engineered Escherichia coli BL21star(DE3) by modulation of lactose metabolism and fucosyltransferase. J Biotechnol. 2015;210:107–15.

    CAS  PubMed  Google Scholar 

  72. Julia P, Eric H, Stefan J, Lothar E, Leonie E. Fucosyltransferases and their applications. Patent US 9611285, April 4 2017.

  73. Sugiyama Y, Gotoh A, Katoh T, Honda Y, Yoshida E, Kurihara S, et al. Introduction of H-antigens into oligosaccharides and sugar chains of glycoproteins using highly efficient 1,2-α-l-fucosynthase. Glycobiology. 2016;26:1235–47.

    CAS  PubMed  Google Scholar 

  74. Seydametova E, Yu J, Shin J, Park Y, Kim C, Kim H, et al. Search for bacterial α1,2-fucosyltransferases for whole-cell biosynthesis of 2′-fucosyllactose in recombinant Escherichia coli. Microbiol Res. 2019;222:35–42.

    CAS  PubMed  Google Scholar 

  75. Choi YH, Kim JH, Park BS, Kim BG. Solubilization and iterative saturation mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency. Biotechnol Bioeng. 2016;113:1666–755.

    CAS  PubMed  Google Scholar 

  76. Yu H, Lau K, Thon V, Autran CA, Jantscher-Krenn E, Xue M, et al. Synthetic disialyl hexasaccharides protect neonatal rats from necrotizing enterocolitis. Angew Chemie Int Ed. 2014;53:6687–91.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31871784, 31870069, 21676119 and 31671845), the National Key Research and Development Program of China (2018YFA0900300).

Author information

Authors and Affiliations

Authors

Contributions

JYD collected the information and wrote the manuscript, XQL and LL revised the manuscript, and LL, JHL, GCD and JC conceived the project.

Corresponding author

Correspondence to Long Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Lv, X., Li, J. et al. Recent advances and challenges in microbial production of human milk oligosaccharides. Syst Microbiol and Biomanuf 1, 1–14 (2021). https://doi.org/10.1007/s43393-020-00004-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-020-00004-w

Keywords

Navigation