Skip to main content

Advertisement

Log in

Morphometric analysis of the proximal thoracic pedicles in Lenke II and IV adolescent idiopathic scoliosis: an evaluation of the feasibility for pedicle screw insertion

  • Case Series
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Purpose

Pedicles on the concave side of the proximal thoracic (PT) curve in adolescent idiopathic scoliosis (AIS) patients with Lenke II and IV deformities tend to be narrow and dysplastic, making pedicle screw (PS) insertion challenging. The aim of this study was to evaluate the feasibility for PS placement in these patients using pedicle chord length, diameter, and channel morphology.

Methods

In this retrospective study, 56 consecutive AIS patients with Lenke II or IV curves who underwent instrumented posterior spinal fusion (PSF) were studied. The mean age at surgery was 14.8 years and the mean PT curve measured 45°. Two independent investigators evaluated all visible pedicles from T1 to T6 vertebral levels using axial images from intraoperative computed tomography-guided navigation recording the pedicle: (1) maximum transverse diameter ‘d’ at the isthmus, (2) maximum chord length ‘l’, and (3) qualitative assessment of the channel morphology (types A–D).

Results

Two hundred and sixty-eight concave and 264 convex pedicles were measured. The mean ‘d’ of the concave pedicles at T3 and T4 was < 3.0 mm, compared to > 5.0 mm for the convex counterparts (p < 0.001). Of all concave pedicle channels, 48% had morphology characteristics that were riskier for PS cannulation (type C or D) compared to 2% of all convex pedicle channels (type A or B) (p < 0.001).

Conclusion

Almost half of all concave pedicles have morphologic characteristics that make them too small to accommodate a PS. Though PSs could be inserted using an in–out–in technique in these patients, alternative fixation anchors may improve strength and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Kleuver M, Lewis SJ, Germscheid NM et al (2014) Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. Eur Spine J 23(12):2603–2618. https://doi.org/10.1007/s00586-014-3356-1

    Article  PubMed  Google Scholar 

  2. Liljenqvist U, Lepsien U, Hackenberg L, Niemeyer T, Halm H (2002) Comparative analysis of pedicle screw and hook instrumentation in posterior correction and fusion of idiopathic thoracic scoliosis. Eur Spine J 11(4):336–343. https://doi.org/10.1007/s00586-002-0415-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lenke LG, Betz RR, Harms J et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Jt Surg Am 83(8):1169–1181. https://www.ncbi.nlm.nih.gov/pubmed/11507125

  4. Gajaseni P, Labianca L, Kalakoti P, Pugely AJ, Weinstein SL (2020) Deformity correction using proximal hooks and distal screws (PHDSs) improves radiological metrics in adolescent idiopathic scoliosis. Eur Spine J. https://doi.org/10.1007/s00586-020-06442-3

    Article  PubMed  Google Scholar 

  5. Trobisch PD, Ducoffe AR, Lonner BS, Errico TJ (2013) Choosing fusion levels in adolescent idiopathic scoliosis. J Am Acad Orthop Surg 21(9):519–528. https://doi.org/10.5435/JAAOS-21-09-519

    Article  PubMed  Google Scholar 

  6. Suk SI, Kim WJ, Lee CS et al (2000) Indications of proximal thoracic curve fusion in thoracic adolescent idiopathic scoliosis: recognition and treatment of double thoracic curve pattern in adolescent idiopathic scoliosis treated with segmental instrumentation. Spine 25(18):2342–2349. https://doi.org/10.1097/00007632-200009150-00012

    Article  CAS  PubMed  Google Scholar 

  7. McLain RF, Ferrara L, Kabins M (2002) Pedicle morphometry in the upper thoracic spine: limits to safe screw placement in older patients. Spine 27(22):2467–2471. https://doi.org/10.1097/00007632-200211150-00009

    Article  PubMed  Google Scholar 

  8. Takeshita K, Maruyama T, Chikuda H et al (2009) Diameter, length, and direction of pedicle screws for scoliotic spine: analysis by multiplanar reconstruction of computed tomography. Spine 34(8):798–803. https://doi.org/10.1097/BRS.0b013e3181895c36

    Article  PubMed  Google Scholar 

  9. Lehman RA Jr, Polly DW Jr, Kuklo TR, Cunningham B, Kirk KL, Belmont PJ Jr (2003) Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine 28(18):2058–2065. https://doi.org/10.1097/01.BRS.0000087743.57439.4F

    Article  PubMed  Google Scholar 

  10. Smorgick Y, Millgram MA, Anekstein Y, Floman Y, Mirovsky Y (2005) Accuracy and safety of thoracic pedicle screw placement in spinal deformities. J Spinal Disord Tech 18(6):522–526. https://doi.org/10.1097/01.bsd.0000154448.90707.a8

    Article  PubMed  Google Scholar 

  11. Papin P, Arlet V, Marchesi D, Rosenblatt B, Aebi M (1999) Unusual presentation of spinal cord compression related to misplaced pedicle screws in thoracic scoliosis. Eur Spine J 8(2):156–159. https://doi.org/10.1007/s005860050147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qian B, Jiang J, Zhu F, Zhu Z, Liu Z, Qiu Y (2013) How is the trachea at risk of injury from pedicle screw insertion in proximal thoracic curve of adolescent idiopathic scoliosis patients? Eur Spine J 22(2):338–344. https://doi.org/10.1007/s00586-012-2520-8

    Article  PubMed  Google Scholar 

  13. Cardoso MJ, Helgeson MD, Paik H, Dmitriev AE, Lehman RA Jr, Rosner MK (2010) Structures at risk from pedicle screws in the proximal thoracic spine: computed tomography evaluation. Spine J 10(10):905–909. https://doi.org/10.1016/j.spinee.2010.08.020

    Article  PubMed  Google Scholar 

  14. Jiang J, Qian B-P, Qiu Y, Wang B, Yu Y, Zhu Z-Z (2016) The potential risk of left subclavian artery injury from excessively long thoracic pedicle screws placed in the proximal thoracic regions of Lenke type 2 adolescent idiopathic scoliosis patients and normal teenagers: an anatomical study. Eur Spine J 25(10):3282–3287. https://doi.org/10.1007/s00586-016-4569-2

    Article  PubMed  Google Scholar 

  15. Sarwahi V, Wendolowski SF, Gecelter RC et al (2016) Are we underestimating the significance of pedicle screw misplacement? Spine 41(9):E548–E555. https://doi.org/10.1097/BRS.0000000000001318

    Article  PubMed  Google Scholar 

  16. Gonzalvo A, Fitt G, Liew S et al (2015) Correlation between pedicle size and the rate of pedicle screw misplacement in the treatment of thoracic fractures: can we predict how difficult the task will be? Br J Neurosurg 29(4):508–512. https://doi.org/10.3109/02688697.2015.1019414

    Article  PubMed  Google Scholar 

  17. Privitera DM, Matsumoto H, Gomez JA, Roye DP Jr, Hyman JE, Vitale MG (2013) Are breech rates for pedicle screws higher in the upper thoracic spine? Spine Deform 1(3):189–195. https://doi.org/10.1016/j.jspd.2013.04.002

    Article  PubMed  Google Scholar 

  18. Kuraishi S, Takahashi J, Hirabayashi H et al (2013) Pedicle morphology using computed tomography-based navigation system in adolescent idiopathic scoliosis. J Spinal Disord Tech 26(1):22–28. https://doi.org/10.1097/BSD.0b013e31823162ef

    Article  PubMed  Google Scholar 

  19. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J 9(3):235–240. https://doi.org/10.1007/s005860000146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flynn JM, Sakai DS (2013) Improving safety in spinal deformity surgery: advances in navigation and neurologic monitoring. Eur Spine J 22(Suppl 2):S131–S137. https://doi.org/10.1007/s00586-012-2360-6

    Article  PubMed  Google Scholar 

  21. Ughwanogho E, Patel NM, Baldwin KD, Sampson NR, Flynn JM (2012) Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal. Spine 37(8):E473–E478. https://doi.org/10.1097/BRS.0b013e318238bbd9

    Article  PubMed  Google Scholar 

  22. Baky FJ, Milbrandt T, Echternacht S, Stans AA, Shaughnessy WJ, Larson AN (2019) Intraoperative computed tomography-guided navigation for pediatric spine patients reduced return to operating room for screw malposition compared with freehand/fluoroscopic techniques. Spine Deform 7(4):577–581. https://doi.org/10.1016/j.jspd.2018.11.012

    Article  PubMed  PubMed Central  Google Scholar 

  23. Watanabe K, Lenke LG, Matsumoto M et al (2010) A novel pedicle channel classification describing osseous anatomy: how many thoracic scoliotic pedicles have cancellous channels? Spine 35(20):1836–1842. https://doi.org/10.1097/BRS.0b013e3181d3cfde

    Article  PubMed  Google Scholar 

  24. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174. https://www.ncbi.nlm.nih.gov/pubmed/843571

  25. Taniguchi Y, Matsubayashi Y, Kato S, Ono T, Oshima Y, Tanaka S (2020) Preoperative assessment of the feasibility of pedicle screw insertion at the proximal thoracic curve in Lenke type 2 idiopathic scoliosis. Glob Spine J 10(3):261–265. https://doi.org/10.1177/2192568219844989

    Article  Google Scholar 

  26. Chan CYW, Kwan MK (2018) Zonal differences in risk and pattern of pedicle screw perforations in adolescent idiopathic scoliosis (AIS): a computerized tomography (CT) review of 1986 screws. Eur Spine J 27(2):340–349. https://doi.org/10.1007/s00586-017-5350-x

    Article  CAS  PubMed  Google Scholar 

  27. Chan CYW, Kwan MK (2017) Safety of pedicle screws in adolescent idiopathic scoliosis surgery. Asian Spine J 11(6):998–1007. https://doi.org/10.4184/asj.2017.11.6.998

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiang J, Mao S, Zhao Q et al (2012) Different proximal thoracic curve patterns have different relative positions of esophagus to spine in adolescent idiopathic scoliosis: a computed tomography study. Spine 37(3):193–199. https://doi.org/10.1097/BRS.0b013e3182285fb9

    Article  PubMed  Google Scholar 

  29. Krag MH, Beynnon BD, Pope MH, DeCoster TA (1988) Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength. J Spinal Disord 1(4):287–294. https://doi.org/10.1097/00002517-198800140-00002

    Article  CAS  PubMed  Google Scholar 

  30. Weinstein JN, Rydevik BL, Rauschning W (1992) Anatomic and technical considerations of pedicle screw fixation. Clin Orthop Relat Res 284:34–46. https://www.ncbi.nlm.nih.gov/pubmed/1395312

  31. Mohamad F, Oka R, Mahar A, Wedemeyer M, Newton P (2006) Biomechanical comparison of the screw-bone interface: optimization of 1 and 2 screw constructs by varying screw diameter. Spine 31(16):E535–E539. https://doi.org/10.1097/01.brs.0000225997.41924.eb

    Article  PubMed  Google Scholar 

  32. Lee CS, Cho JH, Hwang CJ, Lee D-H, Park J-W, Park K-B (2019) The importance of the pedicle diameters at the proximal thoracic vertebrae for the correction of proximal thoracic curve in Asian patients with idiopathic scoliosis. Spine 44(11):E671–E678. https://doi.org/10.1097/BRS.0000000000002926

    Article  PubMed  Google Scholar 

  33. Belmont PJ Jr, Klemme WR, Dhawan A, Polly DW Jr (2001) In vivo accuracy of thoracic pedicle screws. Spine 26(21):2340–2346. https://doi.org/10.1097/00007632-200111010-00010

    Article  PubMed  Google Scholar 

  34. Vaccaro AR, Rizzolo SJ, Balderston RA et al (1995) Placement of pedicle screws in the thoracic spine. Part II: an anatomical and radiographic assessment. J Bone Jt Surg Am 77(8):1200–1206. https://doi.org/10.2106/00004623-199508000-00009

    Article  CAS  Google Scholar 

  35. Jeswani S, Drazin D, Hsieh JC et al (2014) Instrumenting the small thoracic pedicle: the role of intraoperative computed tomography image–guided surgery. Neurosurg Focus 36(3):E6. https://doi.org/10.3171/2014.1.FOCUS13527

    Article  PubMed  Google Scholar 

  36. Lien S-B, Liou N-H, Wu S-S (2007) Analysis of anatomic morphometry of the pedicles and the safe zone for through-pedicle procedures in the thoracic and lumbar spine. Eur Spine J 16(8):1215–1222. https://doi.org/10.1007/s00586-006-0245-2

    Article  PubMed  Google Scholar 

  37. Hassan E, Liau K-M, Ariffin I, Halim YA (2010) Internal morphometry of thoracic pedicles in the immature spine. Spine 35(13):1253–1256. https://doi.org/10.1097/BRS.0b013e3181c1172b

    Article  PubMed  Google Scholar 

  38. Zhang H, Sucato DJ, Nurenberg P, McClung A (2018) Morphometric analysis of vertebral growth using magnetic resonance imaging in the normal skeletally immature spine. Spine 43(2):133–140. https://doi.org/10.1097/BRS.0b013e3181c80ec5

    Article  CAS  PubMed  Google Scholar 

  39. Zhuang Z, Chen Y, Han H et al (2011) Thoracic pedicle morphometry in different body height population: a three-dimensional study using reformatted computed tomography. Spine 36(24):E1547–E1554. https://doi.org/10.1097/BRS.0b013e318210f063

    Article  PubMed  Google Scholar 

  40. Morales-Avalos R, Leyva-Villegas J, Sánchez-Mejorada G et al (2014) Age- and gender-related variations in morphometric characteristics of thoracic spine pedicle: a study of 4,800 pedicles. Clin Anat 27(3):441–450. https://doi.org/10.1002/ca.22359

    Article  PubMed  Google Scholar 

  41. Kim NH, Lee HM, Chung IH, Kim HJ, Kim SJ (1994) Morphometric study of the pedicles of thoracic and lumbar vertebrae in Koreans. Spine 19(12):1390–1394. https://doi.org/10.1097/00007632-199406000-00014

    Article  CAS  PubMed  Google Scholar 

  42. Huang J, Zhang P, Jian X, Jiang H (2018) The prevalence and distribution of vertebral pedicles in adolescent idiopathic scoliosis in CHINESE people: a computed tomography-based study of 2958 vertebral pedicles. World Neurosurg 119:e560–e567. https://doi.org/10.1016/j.wneu.2018.07.211

    Article  PubMed  Google Scholar 

  43. Datir SP, Mitra SR (2004) Morphometric study of the thoracic vertebral pedicle in an Indian population. Spine 29(11):1174–1181. https://doi.org/10.1097/00007632-200406010-00004

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

RHG, SLM, ARK, NSH, EJS, JMF: conception or design of work. RHG, SLM, ARK, NSH, EJS, JMF: acquisition, analysis, or interpretation of data for the work. RHG, SLM, ARK, NSH, EJS, JMF: drafting of work or revising it critically for important intellectual content. RHG, SLM, ARK, NSH, EJS, JMF: final approval of version to be published.

Corresponding author

Correspondence to John M. Flynn.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

IRB approval

This study was approved by the Institutional Review Board at the Children’s Hospital of Philadelphia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzek, R.H., Mitchell, S.L., Krakow, A.R. et al. Morphometric analysis of the proximal thoracic pedicles in Lenke II and IV adolescent idiopathic scoliosis: an evaluation of the feasibility for pedicle screw insertion. Spine Deform 9, 1541–1548 (2021). https://doi.org/10.1007/s43390-021-00377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-021-00377-5

Keywords

Navigation