Skip to main content
Log in

Distributed control scheme for accurate reactive power sharing with enhanced voltage quality for islanded microgrids

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This study presents a distributed control scheme for islanded microgrids to eliminate power sharing errors as well as frequency and voltage deviations based on distributed cooperative control. A consensus algorithm is developed through adaptive regulation of the virtual impedances for accurate power sharing regardless of load variations. The proposed power sharing controller is quite easy to implement with only one simple integral gain. It is achieved without using information about the feeder impedances, load powers or detailed microgrid structure. To remove the deviations in the frequency and voltage magnitude, conventional droop equations are enhanced by adding compensating signals, which are simply determined from the neighbors’ droop information without a PI controller. Therefore, the control complexity is significantly reduced. The control performance is theoretically analyzed using a small-signal state-space model to evaluate the system dynamics and stability. A digital simulation is done using PSIM, and experiments are carried out with a scaled-down microgrid prototype to verify the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Schonbergerschonberger, J., Duke, R., Round, S.D.: DC-bus signaling: a distributed control strategy for a hybrid renewable nanogrid. IEEE Trans. Ind. Electron. 53(5), 1453–1460 (2006)

    Article  Google Scholar 

  2. Mehrizi-Sani, A., Iravani, R.: Potential-function based control of a microgrid in islanded and grid-connected modes. IEEE Trans. Power Syst. 25(4), 1883–1891 (2010)

    Article  Google Scholar 

  3. Guerrero, J.M., Matas, J., De Vicuna, L.G.D.V., Castilla, M., Miret, J.: Wireless-control strategy for parallel operation of distributed-generation inverters. IEEE Trans. Ind. Electron. 53(5), 1461–1470 (2006)

    Article  Google Scholar 

  4. De Brabandere, K., Bolsens, B., Van den Keybus, J., Woyte, A., Driesen, J., Belmans, R.: A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 22(4), 1107–1115 (2007)

    Article  Google Scholar 

  5. Vasquez, J.C., Mastromauro, R.A., Guerrero, J.M., Liserre, M.: Voltage support provided by a droop-controlled multifunctional inverter. IEEE Trans. Ind. Electron. 56(11), 4510–4519 (2009)

    Article  Google Scholar 

  6. He, J., Li, Y.W.: Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation. IEEE Trans. Ind. Appl. 47(6), 2525–2538 (2011)

    Article  MathSciNet  Google Scholar 

  7. Han, H., Liu, Y., Sun, Y., Su, M., Guerrero, J.M., Member, S.: An improved droop control strategy for reactive power sharing in islanded microgrid. IEEE Trans. Power Electron. 30(6), 3133–3141 (2015)

    Article  Google Scholar 

  8. Guerrero, J.M., Vasquez, J.C., Matas, J., de Vicuna, L.G., Castilla, M.: Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)

    Article  Google Scholar 

  9. Han, Y., Li, H., Shen, P., Coelho, E.A.A., Guerrero, J.M.: Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans. Power Electron. 32(3), 2427–2451 (2017)

    Article  Google Scholar 

  10. Mahmood, H., Michaelson, D., Jiang, J.: Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances. IEEE Trans. Power Electron. 30(3), 1605–1617 (2015)

    Article  Google Scholar 

  11. Hoang, T.V., Lee, H.: An adaptive virtual impedance control scheme to eliminate the reactive-power-sharing errors in an islanding meshed microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 966–976 (2018)

    Article  Google Scholar 

  12. Han, Y., Shen, P., Zhao, X., Guerrero, J.M.: Control strategies for islanded microgrid using enhanced hierarchical control structure with multiple current-loop damping schemes. IEEE Trans. Smart Grid 8(3), 1139–1153 (2017)

    Article  Google Scholar 

  13. Hoang, T.V., Lee, H.: Accurate power sharing with harmonic power for islanded multibus microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 7(2), 1286–1299 (2019)

    Article  Google Scholar 

  14. Lin, L., Ma, H., Bai, Z.: An improved proportional load-sharing strategy for meshed parallel inverters system with complex impedances. IEEE Trans. Power Electron. 32(9), 7338–7351 (2017)

    Article  Google Scholar 

  15. Issa, W., Sharkh, S., Mallick, T., Abusara, M.: Improved reactive power sharing for parallel-operated inverters in islanded microgrids. J. Power Electron. 16(3), 1152–1162 (2016)

    Article  Google Scholar 

  16. Guo, Q., Wu, H., Lin, L., Bai, Z., Ma, H.: Secondary voltage control for reactive power sharing in an islanded microgrid. J. Power Electron. 16(1), 329–339 (2016)

    Article  Google Scholar 

  17. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  18. Guo, F., Wen, C., Mao, J., Song, Y.D.: Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Trans. Ind. Electron. 62(7), 4355–4364 (2015)

    Article  Google Scholar 

  19. Schiffer, J., Seel, T., Raisch, J., Sezi, T.: Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control. IEEE Trans. Control Syst. Technol. 24(1), 96–109 (2016)

    Article  Google Scholar 

  20. Han, H., Hou, X., Yang, J., Wu, J., Su, M., Guerrero, J.M.: Review of power sharing control strategies for islanding operation of AC microgrids. IEEE Trans. Smart Grid 7(1), 200–215 (2016)

    Article  Google Scholar 

  21. Yazdanian, M., Mehrizi-Sani, A.: Distributed control techniques in microgrids. IEEE Trans. Smart Grid 5(6), 2901–2909 (2014)

    Article  Google Scholar 

  22. Nasirian, V., Shafiee, Q., Guerrero, J.M., Lewis, F.L., Davoudi, A.: Droop-free distributed control for AC microgrids. IEEE Trans. Power Electron. 31(2), 1600–1617 (2016)

    Article  Google Scholar 

  23. Shafiee, Q., Guerrero, J.M., Vasquez, J.C.: Distributed secondary control for islanded microgrids—a novel approach. IEEE Trans. Power Electron. 29(2), 1018–1031 (2014)

    Article  Google Scholar 

  24. Shafiee, Q., et al.: A multi-functional fully distributed control framework for AC microgrids. IEEE Trans. Smart Grid 9(4), 3247–3258 (2018)

    Article  MathSciNet  Google Scholar 

  25. Wu, X., Shen, C., Iravani, R.: A distributed, cooperative frequency and voltage control for microgrids. IEEE Trans. Smart Grid 9(4), 2764–2776 (2018)

    Article  Google Scholar 

  26. Hou, X., et al.: Distributed hierarchical control of AC microgrid operating in grid-connected, islanded and their transition modes. IEEE Access 6, 77388–77401 (2018)

    Article  Google Scholar 

  27. Chen, G., Guo, Z.: Distributed secondary and optimal active power sharing control for islanded microgrids with communication delays. IEEE Trans. Smart Grid 10(2), 2002–2014 (2019)

    Article  Google Scholar 

  28. Han, R., Meng, L., Ferrari-Trecate, G., Coelho, E.A.A., Vasquez, J.C., Guerrero, J.M.: Containment and consensus-based distributed coordination control to achieve bounded voltage and precise reactive power sharing in islanded AC microgrids. IEEE Trans. Ind. Appl. 53(6), 5187–5199 (2017)

    Article  Google Scholar 

  29. Simpson-Porco, J.W., Shafiee, Q., Dörfler, F., Vasquez, J.C., Guerrero, J.M., Bullo, F.: Secondary frequency and voltage control of islanded microgrids via distributed averaging. IEEE Trans. Ind. Electron. 62(11), 7025–7038 (2015)

    Article  Google Scholar 

  30. Guerrero, J.M., de Vicuna, L.G., Matas, J., Castilla, M., Miret, J.: Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans. Ind. Electron. 52(4), 1126–1135 (2005)

    Article  Google Scholar 

  31. He, J., Li, Y.W., Guerrero, J.M., Blaabjerg, F., Vasquez, J.C.: An islanding microgrid power sharing approach using enhanced virtual impedance control scheme. IEEE Trans. Power Electron. 28(11), 5272–5282 (2013)

    Article  Google Scholar 

  32. Zhu, Y., Zhuo, F., Wang, F., Liu, B., Zhao, Y.: A wireless load sharing strategy for islanded microgrid based on feeder current sensing. IEEE Trans. Power Electron. 30(12), 6706–6719 (2015)

    Article  Google Scholar 

  33. Zhu, Y., Zhuo, F., Wang, F., Liu, B., Gou, R., Zhao, Y.: A virtual impedance optimization method for reactive power sharing in networked microgrid. IEEE Trans. Power Electron. 31(4), 2890–2904 (2016)

    Article  Google Scholar 

  34. Zhang, H., Kim, S., Sun, Q., Zhou, J.: Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids. IEEE Trans. Smart Grid 8(4), 1749–1761 (2017)

    Article  Google Scholar 

  35. Zhou, J., Kim, S., Zhang, H., Sun, Q.: Consensus-based distributed control for accurate reactive, harmonic, and imbalance power sharing in microgrids. IEEE Trans. Smart Grid 9(4), 2453–2467 (2018)

    Article  Google Scholar 

  36. He, J., Li, Y.W., Blaabjerg, F.: An enhanced islanding microgrid reactive power, imbalance power, and harmonic power sharing scheme. IEEE Trans. Power Electron. 30(6), 3389–3401 (2015)

    Article  Google Scholar 

  37. Fan, Y., Hu, G., Egerstedt, M.: Distributed reactive power sharing control for microgrids with event-triggered communication. IEEE Trans. Control Syst. Technol. 25(1), 118–128 (2017)

    Article  Google Scholar 

  38. Sun, Y., Hou, X., Yang, J., Han, H., Su, M., Guerrero, J.M.: New perspectives on droop control in AC microgrid. IEEE Trans. Ind. Electron. 64(7), 5741–5745 (2017)

    Article  Google Scholar 

  39. Coelho, E.A.A., et al.: Small-signal analysis of the microgrid secondary control considering a communication time delay. IEEE Trans. Ind. Electron. 63(10), 6257–6269 (2016)

    Article  Google Scholar 

  40. Kahrobaeian, A., Ibrahim Mohamed, Y.A.: Networked-Based hybrid distributed power sharing and control for islanded microgrid systems. IEEE Trans. Power Electron. 30(2), 603–617 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NRF of Korea Grant under Grant NRF-2018R1D1A1A09081779 and in part by the KETEP and the MOTIE under Grant 20194030202310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hee Lee.

Appendix

Appendix

The matrices ΩMG and ΩMG_d in (34) are expressed as:

$$ \varOmega_{\text{MG}} = \left[ {\begin{array}{*{20}c} { - \omega_{\text{LPF}} I_{n \times n} } & {\omega_{\text{LPF}} \varOmega_{PQ} } & {\omega_{\text{LPF}} \varOmega_{P\varphi } } & {\omega_{\text{LPF}} \varOmega_{PX} } \\ {O_{n \times n} } & {\omega_{\text{LPF}} \varOmega_{QQ} } & {\omega_{\text{LPF}} \varOmega_{Q\varphi } } & {\omega_{\text{LPF}} \varOmega_{QX} } \\ {\varOmega_{\varphi P} } & {O_{n \times n} } & {O_{n \times n} } & {O_{n \times n} } \\ {O_{n \times n} } & {k_{0} \varOmega_{XQ} } & {O_{n \times n} } & {O_{n \times n} } \\ \end{array} } \right], $$

and

$$ \varOmega_{{{\text{MG}}\_d}} = \left[ {\begin{array}{*{20}c} {O_{n \times n} } & {\omega_{\text{LPF}} \varOmega_{PQ\_d} } & {O_{n \times n} } & {O_{n \times n} } \\ {O_{n \times n} } & {\omega_{\text{LPF}} \varOmega_{QQ\_d} } & {O_{n \times n} } & {O_{n \times n} } \\ {\varOmega_{\varphi P\_d} } & {O_{n \times n} } & {O_{n \times n} } & {O_{n \times n} } \\ {O_{n \times n} } & {k_{0} \varOmega_{XQ\_d} } & {O_{n \times n} } & {O_{n \times n} } \\ \end{array} } \right], $$

where

$$ \begin{aligned} I_{n \times n} & = \left[ {\begin{array}{*{20}c} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \\ \end{array} } \right],\quad \varOmega_{PQ} = \left[ {\begin{array}{*{20}c} { - \alpha_{p1} n_{1} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & { - \alpha_{pn} n_{n} } \\ \end{array} } \right], \\ \varOmega_{P\varphi } & = \left[ {\begin{array}{*{20}c} {\beta_{p1} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {\beta_{pn} } \\ \end{array} } \right],\quad \varOmega_{PX} = \left[ {\begin{array}{*{20}c} {\gamma_{p1} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {\gamma_{pn} } \\ \end{array} } \right], \\ O_{n \times n} & = \left[ {\begin{array}{*{20}c} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ \end{array} } \right],\quad \varOmega_{QQ} = \left[ {\begin{array}{*{20}c} { - \left( {1 + \alpha_{q1} n_{1} } \right)} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & { - \left( {1 + \alpha_{qn} n_{n} } \right)} \\ \end{array} } \right], \\ \varOmega_{Q\varphi } & = \left[ {\begin{array}{*{20}c} {\beta_{q1} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {\beta_{qn} } \\ \end{array} } \right],\quad \varOmega_{QX} = \left[ {\begin{array}{*{20}c} {\gamma_{q1} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {\gamma_{qn} } \\ \end{array} } \right], \\ \varOmega_{\varphi P} & = \left[ {\begin{array}{*{20}c} { - m_{1} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & { - m_{n} } \\ \end{array} } \right],\quad \varOmega_{XQ} = \left[ {\begin{array}{*{20}c} {\left| {N_{1} } \right|n_{1} } & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & {\left| {N_{n} } \right|n_{n} } \\ \end{array} } \right], \\ \varOmega_{PQ\_d} & = \left[ {\begin{array}{*{20}c} 0 & {a_{12} \alpha_{p1} n_{2} \left| {N_{1} } \right|^{ - 1} } & \cdots & {a_{1n} \alpha_{p1} n_{n} \left| {N_{1} } \right|^{ - 1} } \\ {a_{21} \alpha_{p2} n_{1} \left| {N_{2} } \right|^{ - 1} } & 0 & \cdots & {a_{2n} \alpha_{p2} n_{n} \left| {N_{2} } \right|^{ - 1} } \\ \vdots & \vdots & \ddots & \vdots \\ {a_{n1} \alpha_{pn} n_{1} \left| {N_{n} } \right|^{ - 1} } & {a_{n2} \alpha_{pn} n_{2} \left| {N_{n} } \right|^{ - 1} } & \cdots & 0 \\ \end{array} } \right]\, \\ \varOmega_{QQ\_d} & = \left[ {\begin{array}{*{20}c} 0 & {a_{12} \alpha_{q1} n_{2} \left| {N_{1} } \right|^{ - 1} } & \cdots & {a_{1n} \alpha_{q1} n_{n} \left| {N_{1} } \right|^{ - 1} } \\ {a_{21} \alpha_{q2} n_{1} \left| {N_{2} } \right|^{ - 1} } & 0 & \cdots & {a_{2n} \alpha_{q2} n_{n} \left| {N_{2} } \right|^{ - 1} } \\ \vdots & \vdots & \ddots & \vdots \\ {a_{n1} \alpha_{qn} n_{1} \left| {N_{n} } \right|^{ - 1} } & {a_{n2} \alpha_{qn} n_{2} \left| {N_{n} } \right|^{ - 1} } & \cdots & 0 \\ \end{array} } \right]\, \\ \varOmega_{\varphi P\_d} & = \left[ {\begin{array}{*{20}c} 0 & {a_{12} m_{2} \left| {N_{1} } \right|^{ - 1} } & \cdots & {a_{1n} m_{n} \left| {N_{1} } \right|^{ - 1} } \\ {a_{21} m_{1} \left| {N_{2} } \right|^{ - 1} } & 0 & \cdots & {a_{2n} m_{n} \left| {N_{2} } \right|^{ - 1} } \\ \vdots & \vdots & \ddots & \vdots \\ {a_{n1} m_{1} \left| {N_{n} } \right|^{ - 1} } & {a_{n2} m_{2} \left| {N_{n} } \right|^{ - 1} } & \cdots & 0 \\ \end{array} } \right], \\ \varOmega_{XQ\_d} & = \left[ {\begin{array}{*{20}c} 0 & { - a_{12} n_{2} } & \cdots & { - a_{1n} n_{n} } \\ { - a_{21} n_{1} } & 0 & \cdots & { - a_{2n} n_{n} } \\ \vdots & \vdots & \ddots & \vdots \\ { - a_{n1} n_{1} } & { - a_{n2} n_{2} } & \cdots & 0 \\ \end{array} } \right]. \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, T.V., Lee, HH. Distributed control scheme for accurate reactive power sharing with enhanced voltage quality for islanded microgrids. J. Power Electron. 20, 601–613 (2020). https://doi.org/10.1007/s43236-020-00047-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00047-1

Keywords

Navigation