Skip to main content

Advertisement

Log in

Real-time online optimal control of current-fed dual active bridges based on machine learning

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a real-time online optimal (RT-OPT) control method based on machine learning for a current-fed dual active bridge (CF-DAB). The basis of this control strategy is the linear quadratic optimal control, which designs the sliding surface and realizes power control based on sliding mode control (SMC). For the parameters of Q and R in the objective function of the linear quadratic regulator (LQR), a genetic algorithm is used to find the optimal value, and the optimal value is taken as the sample data. Through machine learning offline training, a neural network is obtained and run online to realize real-time online optimal control. The control method was verified by simulations in MATLAB/Simulink. The RT-OPT method achieves the expected functionality, and has better dynamic and steady-state performance than the PI controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amjadi, Z., et al.: Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems. IEEE Trans. Ind. Electron. 57(2), 608–616 (2010)

    Article  Google Scholar 

  2. Jia, K., et al.: Historical-data-based energy management in a microgrid with a hybrid energy storage system. IEEE Trans. Ind. Inform. 13(5), 2597–2605 (2017)

    Article  Google Scholar 

  3. Eldeeb, H.H., et al.: Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles. IEEE Trans. Ind. Appl. 55(3), 2252–2262 (2019)

    Article  Google Scholar 

  4. Xiao, J., et al.: Multilevel energy management system for hybridization of energy storages in DC microgrids. IEEE Trans. Smart Grid 7(2), 847–856 (2016)

    Google Scholar 

  5. Liu, Y., et al.: Sizing a hybrid energy storage system for maintaining power balance of an isolated system with high penetration of wind generation. IEEE Trans. Power Syst. 31(4), 3267–3275 (2016)

    Article  Google Scholar 

  6. Khaligh, A., et al.: Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans. Veh. Technol. 59(6), 2806–2814 (2010)

    Article  Google Scholar 

  7. Wang, H., et al.: Cyber-physical control for energy management of off-road vehicles with hybrid energy storage systems. IEEE/ASME Trans. Mechatron. 23(6), 2609–2618 (2018)

    Article  Google Scholar 

  8. Yan, N., et al.: Hybrid energy storage capacity allocation method for active distribution network considering demand side response. IEEE Trans. Appl. Supercond. 29(2), 1–4 (2019)

    Article  Google Scholar 

  9. Shen, J., et al.: A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system. IEEE Trans. Transp. Electrif. 1(3), 223–231 (2015)

    Article  MathSciNet  Google Scholar 

  10. Choi, M., et al.: Energy management optimization in a battery/supercapacitor hybrid energy storage system. IEEE Trans. Smart Grid 3(1), 463–472 (2012)

    Article  Google Scholar 

  11. Shen, J., et al.: Design and real-time controller implementation for a battery-ultracapacitor hybrid energy storage system. IEEE Trans. Ind. Inform. 12(5), 1910–1918 (2010)

    Article  Google Scholar 

  12. Ghiassi-Farrokhfal, Y., et al.: Joint optimal design and operation of hybrid energy storage systems. IEEE J. Sel. Areas Commun. 34(3), 639–650 (2016)

    Article  Google Scholar 

  13. Zheng, C., et al.: An energy management strategy of hybrid energy storage systems for electric vehicle applications. IEEE Trans. Sustain. Energy 9(4), 1880–1888 (2018)

    Article  Google Scholar 

  14. Snoussi, J., et al.: Optimal sizing of energy storage systems using frequency-separation-based energy management for fuel cell hybrid electric vehicles. IEEE Trans. Veh. Technol. 67(10), 9337–9346 (2018)

    Article  Google Scholar 

  15. Ju, C., et al.: A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs. IEEE Trans. Smart Grid 9(6), 6047–6057 (2018)

    Article  Google Scholar 

  16. Kotra, S., et al.: Energy management of hybrid microgrid with hybrid energy storage system. In: International Conference on Renewable Energy Research and Applications (ICRERA), pp. 856–860 (2015)

  17. Kollmeyer, P., et al.: Optimal performance of a full scale li-ion battery and li-ion capacitor hybrid energy storage system for a plug-in hybrid vehicle. In: IEEE Energy Conversion Congress and Exposition (ECCE), pp. 572–577 (2017)

  18. Azizivahed, A., et al.: A new bi-objective approach to energy management in distribution networks with energy storage systems. IEEE Trans. Sustain. Energy 9(1), 56–64 (2018)

    Article  Google Scholar 

  19. Kollimalla, S.K., et al.: Design and analysis of novel control strategy for battery and supercapacitor storage system. IEEE Trans. Sustain. Energy 5(4), 1137–1144 (2014)

    Article  Google Scholar 

  20. Shi, Y., et al.: Optimized operation of current-fed dual active bridge DC–DC converter for PV applications. IEEE Trans. Ind. Electron. 62(11), 6986–6995 (2015)

    Article  Google Scholar 

  21. Jeung, Y., et al.: Voltage and current regulations of bidirectional isolated dual-active-bridge DC/DC converters based on a double-integral sliding mode control. IEEE Trans. Power Electron. 34(7), 6937–6946 (2019)

    Article  Google Scholar 

  22. Gonzales, O., et al.: Sliding mode controller based on a linear quadratic integral regulator surface for power control on a dual active bridge converter. In: IEEE Transactions on Vehicular Technology, pp. 1–6 (2018)

  23. Golchoubian, P., et al.: Voltage balancing control of IPOS modular dual active bridge DC/DC converters based on hierarchical sliding mode control. IEEE Trans. Veh. Technol. 66(11), 9678–9688 (2017)

    Article  Google Scholar 

  24. Duan, J., et al.: Reinforcement-learning-based optimal control for hybrid energy storage systems in hybrid. IEEE Trans. Ind. Inform. (2019). https://doi.org/10.1109/tii.2019.2896618

    Article  Google Scholar 

  25. Shih, P., et al.: Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with Application to spark engine EGR operation. IEEE Trans. Neural Netw. 19(8), 1369–1388 (2008)

    Article  Google Scholar 

  26. Xiongyang, et al.: Neural-network-based online optimal control for uncertain non-linear continuous-time systems with control constraints. IET Control Theory Appl. 7(17), 2037–2047 (2013)

    Article  MathSciNet  Google Scholar 

  27. Qin, H., et al.: Generalized average modeling of dual active bridge DC–DC converter. IEEE Trans. Power Electron. 27(4), 2078–2084 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Supported by the Heilongjiang Provincial Science Foundation of China (ZD2018012) and the National Nature Science Foundation of China (51677034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Liu, X., Pu, H. et al. Real-time online optimal control of current-fed dual active bridges based on machine learning. J. Power Electron. 20, 43–52 (2020). https://doi.org/10.1007/s43236-019-00013-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-019-00013-6

Keywords

Navigation