Skip to main content
Log in

Preparation, characterization, and photocatalytic degradation of methylene blue of SnO2/RGO nanocomposite produced by facile hydrothermal process

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

A facile hydrothermal route has been used to produce a SnO2 (tin oxide)/RGO (reduced graphene oxide) nanocomposite. The microstructure and properties of the prepared nanocomposite were studied by an X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), Fourier transformed infrared (FTIR), UV–Vis analysis, and transmission electron microscope (TEM). The formation of SnO2 phase over RGO is confirmed by the XRD and FTIR results. The absence of a distinct peak of GO in the SnO2/RGO nanocomposite produced hydrothermally shows the reduction of GO to RGO completely. FE-SEM and TEM images show that SnO2 nanoparticles with size about 20 nm distributed homogeneously on the graphene surface. UV–Vis analysis of the SnO2/RGO sample exhibits broad absorption in the visible range (400–700 nm) indicating the SnO2 formation on the sheets of reduced graphene oxide. Moreover, the nanocomposite was employed as a photocatalyst under UV light irradiations to the removal of methylene blue (MB). The produced SnO2/RGO nanocomposite removes the absorption peak of MB at around 665 nm within 20 min, implying the nanocomposite possesses good photocatalytic efficiency under UV light irradiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Boran, S. Çetinkaya, Mater. Sci. Forum. (2018). https://doi.org/10.4028/www.scientific.net/MSF.915.135

    Article  Google Scholar 

  2. Q. Tang, L. Wang, X. Ma, M. Li, Mater. Lett. (2021). https://doi.org/10.1016/j.matlet.2021.129765

    Article  Google Scholar 

  3. A. Mallik, I. Roy, D. Chalapathi, C. Narayana, T.D. Das, A. Bhattacharya, S. Bera, S. Bhattacharya, S. Def, B. Das, D. Chattopadhyay, Mater. Sci. Eng.: B (2021). https://doi.org/10.1016/j.mseb.2020.114938

    Article  Google Scholar 

  4. L. Gao, C. Gu, H. Ren, X. Song, J. Huang, Electrochim. Acta. (2018). https://doi.org/10.1016/j.electacta.2018.09.059

    Article  Google Scholar 

  5. C.C. Hou, S. Brahma, S.C. Weng, C.C. Chang, J.L. Huang, Facile. Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.04.007

    Article  Google Scholar 

  6. Y.Z. Wu, S. Brahma, S.C. Weng, C.C. Chang, J.L. Huang, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152889

    Article  Google Scholar 

  7. H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Nanotechnology (2012). https://doi.org/10.1088/0957-4484/23/35/355705

    Article  Google Scholar 

  8. Y. Lin, R. Hong, H. Chen, D. Zhang, J. Xu, J. Nanomater. (2020). https://doi.org/10.1155/2020/4147357

    Article  Google Scholar 

  9. C. Lin, Y. Gao, J. Zhang, D. Xue, H. Fang, J. Tian, C. Zhou, C. Zhang, Y. Li, H. Li, J. Mater. Res. (2020). https://doi.org/10.1557/jmr.2020.41

    Article  Google Scholar 

  10. R. Khurram, A. Javed, R. Ke, C. Lena, Z. Wang, Nanomater. (2021). https://doi.org/10.3390/nano11082021

    Article  Google Scholar 

  11. T.T.T. Phan, T.T.H. Nguyen, H.T. Huu, T.T. Truong, L.T. Nguyen, V.T. Nguyen, V.A. Tran, T.L. Nguyen, H.L. Nguyen, V. Vo, J. Nanomater. (2021). https://doi.org/10.1155/2021/9941202

    Article  Google Scholar 

  12. S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, A.A. Khan, F.A. Aziz, R.F. Rafique, M.E. Hoque, PLoS One (2018). https://doi.org/10.1371/journal.pone.0202694

    Article  Google Scholar 

  13. H. Chen, X. Pu, M. Gu, J. Zhu, L. Cheng, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.08.095

    Article  Google Scholar 

  14. G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain, Int. Nano Lett. (2012). https://doi.org/10.1186/2228-5326-2-17

    Article  Google Scholar 

  15. R. Shyamala, L.G. Devi, Chem. Phys. Lett. (2020). https://doi.org/10.1016/j.cplett.2020.137385

    Article  Google Scholar 

  16. S.S. Chawhan, D.P. Barai, B.A. Bhanvase, Mater. Today Commun. (2020). https://doi.org/10.1016/j.mtcomm.2020.101148

    Article  Google Scholar 

  17. P. Raizada, A. Sudhaik, P. Singh, Mater. Sci. Energy Technol. (2019). https://doi.org/10.1016/j.mset.2019.04.007

    Article  Google Scholar 

  18. Y. Cao, Y. Li, D. Jia, J. Xie, RSC Adv. (2014). https://doi.org/10.1039/C4RA06995A

    Article  Google Scholar 

  19. L. Tang, V.H. Nguyen, Y.R. Lee, J. Kim, J.J. Shim, Synth. Method. (2015). https://doi.org/10.1016/j.synthmet.2015.01.018

    Article  Google Scholar 

  20. Y. Zhang, M. Liu, S. Sun, L. Yang, Adv. Compos. Lett. (2020). https://doi.org/10.1177/2633366X20909839

    Article  Google Scholar 

  21. D. Zhang, A. Liu, H. Chang, B. Xia, RSC Adv. (2015). https://doi.org/10.1039/C4RA10942B

    Article  Google Scholar 

  22. V.T. Pham, H.L. Trung, N.K. Tran, H.C. Manh, H.N. Duc, H.T.T. Quynh, T.H. Pham, Mater. Res. Express. (2018). https://doi.org/10.1088/2053-1591/aad6ca

    Article  Google Scholar 

  23. A. Debataraja, B. Yuliarto, Nugraha, B.S. Hiskia, Mater. Sci. Forum (2017). https://doi.org/10.4028/www.scientific.net/MSF.887.32

    Article  Google Scholar 

  24. M. Khan, A. Parveen, J. Nanotechnol. Res. (2020). https://doi.org/10.26502/jnr.2688-85210013

    Article  Google Scholar 

  25. R. Zhang, J.B. Jia, J.L. Cao, Y. Wang, Front. Chem. (2018). https://doi.org/10.3389/fchem.2018.00337

    Article  Google Scholar 

  26. S.P. Lim, N.M. Huang, H.N. Lim, Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2013.01.102

    Article  Google Scholar 

  27. B. Wang, D. Su, J. Park, H. Ahn, G. Wang, Nanoscale Res. Lett. (2012). https://doi.org/10.1186/1556-276X-7-215

    Article  Google Scholar 

  28. Y. Deng, C. Fang, G. Chen, J. Power Sources (2016). https://doi.org/10.1016/j.jpowsour.2015.11.017

    Article  Google Scholar 

  29. R. Nurzulaikha, H.N. Lim, I. Harrison, S.S. Lim, A. Pandikumar, N.M. Huang, S.P. Lim, G.S.H. Thien, N. Yusoff, I. Ibrahim, Sens. Bio-Sens. Res. (2015). https://doi.org/10.1016/j.sbsr.2015.06.002

    Article  Google Scholar 

  30. T. Nematian, A. Shakeri, Z. Salehi, A.A. Saboury, Biotechnol. Biofuels. (2020). https://doi.org/10.1186/s13068-020-01688-x

    Article  Google Scholar 

  31. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3th edn. (Pearson, 2014), p. 95.

  32. M.N. Najafabadi, H. Ghanbari, R. Nghizadeh, RSC Adv. (2021). https://doi.org/10.1039/d1ra01239h

    Article  Google Scholar 

  33. W. Guo, Q. Zhou, J. Zhang, M. Fu, N. Radacsi, Y. Li, Sens. Actuators B: Chem. (2019). https://doi.org/10.1016/j.snb.2019.126959

    Article  Google Scholar 

  34. V. Babaahmadi, M. Montazer, Colloids Surf. A: Physicochem. Eng. Aspects (2016). https://doi.org/10.1016/j.colsurfa.2016.07.025

    Article  Google Scholar 

  35. P.V. Tuan, L.T. Hieu, V.T. Tan, T.T. Phuong, H.T.T. Quỳnh, T.N. Khiem, Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab1e12

    Article  Google Scholar 

  36. H. Shen, X. Zhao, L. Duan, R. Liu, H. Wu, T. Hou, X. Jiang, H. Gao, Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2016.06.031

    Article  Google Scholar 

  37. C. Adin, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.08.298

    Article  Google Scholar 

  38. L.S. Zhang, L.Y. Jiang, H.J. Yan, W.D. Wang, W. Wang, W.G. Song, Y.G. Guo, L.J. Wan, J. Mater. Chem. (2010). https://doi.org/10.1039/C0JM00672F

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salehi.

Ethics declarations

Conflict of interest

There is no conflict of interest with regard to the submitted manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddas, S., Salehi, M. & Bagheri-Kazemabad, S. Preparation, characterization, and photocatalytic degradation of methylene blue of SnO2/RGO nanocomposite produced by facile hydrothermal process. J. Korean Ceram. Soc. 59, 698–704 (2022). https://doi.org/10.1007/s43207-022-00210-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00210-3

Keywords

Navigation