Skip to main content
Log in

Electrochemical properties of Sr-doped layered perovskite as a promising anode material for direct hydrocarbon SOFCs

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

A direct utilization of hydrocarbon fuels in solid-oxide fuel cell (SOFC) has been considered a worthwhile and realizable goal. Admittedly, while great strides have been made toward this development goal, there still remain Ni-based anode materials issues to be resolved. In this regard, this study focuses on Sr effect on electrical and electrochemical behaviors in PrBaMn2O5+δ (PBM) to be employed as an anode in SOFC operation under hydrogen and hydrocarbon fuels. The electrical conductivity of A-site layered PrBa0.8Sr0.2Mn2O5+δ (PBSM) oxide reaches 3.74 S cm−1 at 800 °C in H2, which is higher than that of PBM due to doping smaller Sr into Ba site and fully meets the requirement to be employed as an anode material. The electrochemical performance is evaluated using La0.9Sr0.1Ga0.8Mg0.2O3−δ electrolyte-supported cell based on A-site layered PBSM anode with Co–Fe catalysts, and shows peak power density around 1.38 and 0.68 W cm−2 at 800 °C in H2 and C3H8, respectively. Considering the electrical and electrochemical properties, A-site layered PBSM might offer the opportunities to discover and explore new high-performance anode material for direct hydrocarbon SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.C.H. Steel, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2001)

    Article  Google Scholar 

  2. Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, S.A. Barnett, A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435, 795–798 (2005)

    Article  CAS  Google Scholar 

  3. Z. Shao, S.M. Haile, A high performance cathode for the next generation solid-oxide fuel cells. Nature 431, 170–173 (2004)

    Article  CAS  Google Scholar 

  4. S. Mclntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells. Chem. Rev. 104, 4845–4865 (2004)

    Article  Google Scholar 

  5. W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 113, 8104–8151 (2004)

    Article  Google Scholar 

  6. Z. Zhan, S.A. Barnett, An octane-fueled solid oxide fuel cell. Science 308, 844–847 (2005)

    Article  CAS  Google Scholar 

  7. L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, M. Liu, Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326, 126–129 (2009)

    Article  CAS  Google Scholar 

  8. S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.W. Ju, H.Y. Jeong, J. Shin, J.T.S. Irvine, G. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015)

    Article  CAS  Google Scholar 

  9. E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)

    Article  CAS  Google Scholar 

  10. S.P. Jiang, S.H. Chan, A review of anode materials development in solid oxide fuel cells. J. Mater. Sci. 39, 4405–4439 (2004)

    Article  CAS  Google Scholar 

  11. X.M. Ge, S.H. Chan, Q.L. Liu, Q. Sun, Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Adv. Energy Mater. 2, 1156–1181 (2012)

    Article  CAS  Google Scholar 

  12. P. Boldrin, E. Ruiz-Trejo, J. Mermelstein, J.B. Menendez, T.R. Reina, N.P. Brandon, Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem. Rev. 116, 13633–13684 (2016)

    Article  CAS  Google Scholar 

  13. D.M. Bastidas, S. Tao, J.T.S. Irvine, A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. J. Mater. Chem. 16, 1603–1605 (2006)

    Article  CAS  Google Scholar 

  14. S. Zha, Z. Cheng, M. Liu, Sulfur poisoning and regeneration of ni-based anodes in solid oxide fuel cells. J. Electrochem. Soc. 154, B201–B206 (2007)

    Article  CAS  Google Scholar 

  15. B.L. Augusto, F.B. Noronha, F.C. Fonseca, F.N. Tabuti, R.C. Colman, L.V. Mattos, Nickel/gadolinium-doped ceria anode for direct ethanol solid oxide fuel cell. Int. J. Hydrog. Energy 39, 11196–11209 (2014)

    Article  CAS  Google Scholar 

  16. A.A.A. da Silva, N. Bion, F. Epron, S. Baraka, F.C. Fonseca, R.C. Rabelo-Neto, L.V. Mattos, F.B. Noronha, Effect of the type of ceria dopant on the performance of Ni/CeO2 SOFC anode for ethanol internal reforming. Appl. Catal. B Environ. 206, 626–641 (2017)

    Article  Google Scholar 

  17. M. Liu, R. Peng, D. Dong, J. Gao, X. Liu, G. Meng, Direct liquid methanol-fueled solid oxide fuel cell. J. Power Sour. 185, 188–192 (2008)

    Article  CAS  Google Scholar 

  18. S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 165–167 (2000)

    Article  Google Scholar 

  19. S. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2, 320–323 (2003)

    Article  CAS  Google Scholar 

  20. J.C. Ruiz-Morales, J. Canales-Vázquez, C. Savaniu, D. Marrero-López, W. Zhou, J.T.S. Irvine, Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439, 568–571 (2006)

    Article  CAS  Google Scholar 

  21. Y.H. Huang, I.D. Ronald, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254–257 (2006)

    Article  CAS  Google Scholar 

  22. G. Kim, S. Wang, A.J. Jacobson, Z. Yuan, W. Donner, C.L. Chen, L. Reimus, P. Brodersen, A.A. Mims, Oxygen exchange kinetics of epitaxial PrBaCo2O5+δ thin films. Appl. Phys. Lett. 88, 024103 (2006)

    Article  Google Scholar 

  23. G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, C.A. Mims, Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J. Mater. Chem. 17, 2500–2505 (2007)

    Article  CAS  Google Scholar 

  24. S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H.Y. Jeong, Y. Choi, G. Kim, M. Liu, Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ. Sci. Rep. 3, 2426 (2013)

    Article  Google Scholar 

  25. S. Choi, J. Shin, G. Kim, The electrochemical and thermodynamic characterization of PrBaCo2−xFexO5+δ (x = 0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells. J. Power Sour. 201, 10–17 (2012)

    Article  CAS  Google Scholar 

  26. S. Sengodan, S. Ahn, J. Shin, G. Kim, Oxidation–reduction behavior of La0.8Sr0.2ScyMn1yOδ (y = 0.2, 0.3, 0.4): defect structure, thermodynamic and electrical properties. Solid State Ion. 228, 25–31 (2012)

    Article  CAS  Google Scholar 

  27. M.R. Lees, J. Barratt, G. Balakrishnan, D.M.K. Paul, M. Yethiraj, Influence of charge and magnetic ordering on the insulator-metal transition in Pr1xCaxMnO3. Phys. Rev. B Condens. Matter 52, R14303–R14307 (1995)

    Article  CAS  Google Scholar 

  28. M.R. Lees, J. Barratt, G. Balakrishnan, D.M.K. Paul, C.D. Dewhurst, Low-temperature magnetoresistance and magnetic ordering in Pr1−xCaxMnO3. J. Phys. Condens. Matter 8, 2967–2979 (1996)

    Article  CAS  Google Scholar 

  29. S. Choi, J. Shin, G. Kim, The effect of calcium doping on the improvement of performance and durability in a layered perovskite cathode for intermediate-temperature solid oxide fuel cells. J. Mater. Chem. A 3, 6088–6095 (2015)

    Article  CAS  Google Scholar 

  30. S. Choi, S. Sengodan, S. Park, Y.-W. Ju, J. Kim, J. Hyodo, H.Y. Jeong, T. Ishihara, J. Shin, G. Kim, A robust symmetrical electrode with layered perovskite structure for direct hydrocarbon solid oxide fuel cells: PrBa0.8Ca0.2Mn2O5+δ. J. Mater. Chem. A 4, 1747–1753 (2016)

    Article  CAS  Google Scholar 

  31. O. Kwon, S. Sengodan, K. Kim, G. Kim, H.Y. Jeong, J. Shin, Y.-W. Ju, J.W. Han, G. Kim, Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 8, 15967 (2017)

    Article  CAS  Google Scholar 

  32. Y. Zhang, H. Zhao, Z. Du, K. Świerczek, Y. Li, High-performance smbamn2o5+δ electrode for symmetrical solid oxide fuel cell. Chem. Mater. 31, 3784–3793 (2019)

    Article  CAS  Google Scholar 

  33. V.V. Vashook, S.P. Tolochko, I.I. Yushkevich, L.V. Makhnach, I.F. Kononyuk, H. Altenburg, J. Hauck, H. Ullmann, Oxygen nonstoichiometry and electrical conductivity of the solid solutions La2−xSrxNiOy (0 ≤ x ≤ 0.5). Solid State Ion. 110, 245–253 (1998)

    Article  CAS  Google Scholar 

  34. S. Park, S. Choi, J. Kim, J. Shin, G. Kim, Strontium doping effect on high-performance PrBa1−xSrxCo2O5+δ as a cathode material for IT-SOFCs. ECS Electrochem Lett 1(5), F29–F32 (2012)

    Article  CAS  Google Scholar 

  35. S. Yoo, S. Choi, J. Kim, J. Shin, G. Kim, Investigation of layered perovskite type NdBa1−xSrxCo2O5+δ (x = 0, 0.25, 0.5, 0.75, and 1.0) cathodes for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 100, 44–50 (2013)

    Article  CAS  Google Scholar 

  36. Z.G. Lu, J.H. Zhu, Z.H. Bi, X.C. Lu, A Co–Fe alloy as alternative anode for solid oxide fuel cell. J. Power Sour. 180, 172–175 (2008)

    Article  CAS  Google Scholar 

  37. A.A. Mirzaei, A.B. Babaei, M. Galavy, A. Youssefi, A silica supported Fe–Co bi-metallic catalyst prepared by the sol/gel technique: operating conditions, catalytic properties and characterization. Fuel Process. Technol. 91, 335–347 (2010)

    Article  CAS  Google Scholar 

  38. T. Horita, N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya, Oxidation and steam reforming of CH4 on Ni and Fe anodes under low humidity conditions in solid oxide fuel cells. J. Electrochem. Soc. 143, 1161–1168 (1996)

    Article  CAS  Google Scholar 

  39. O.A. Marina, M. Mogensen, High-temperature conversion of methane on a composite gadolinia-doped ceria–gold electrode. Appl. Catal. Gen. 189, 117–126 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Kumoh National Institute of Technology (2018-104-150)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihyuk Choi.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S. Electrochemical properties of Sr-doped layered perovskite as a promising anode material for direct hydrocarbon SOFCs. J. Korean Ceram. Soc. 57, 409–415 (2020). https://doi.org/10.1007/s43207-020-00045-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00045-w

Keywords

Navigation