Skip to main content
Log in

Development of electrode architecture using Sb–rGO composite and CMC binder for high-performance sodium-ion battery anodes

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Metallic antimony (Sb) is considered as a promising anode material for sodium-ion batteries (SIBs) owing to its high theoretical capacity (660 mAh/g) based on alloying/dealloying reactions with sodium ions. The main issues of Sb, however, are its large volume expansion upon cycling. In this study, we synthesized Sb-reduced graphene oxide (rGO) composite material by reduction of Sb2O3 nanoparticles. We confirmed that ~ 5 nm sized Sb nanoparticles are well distributed onto the rGO sheets, and Sb–rGO composite electrodes showed higher capacity and better cycling performance compared to bare Sb nanoplatelets. This improvement is attributed to increased electrical conductivity owing to incorporation of rGO, which also acts as a buffer against volume expansion of Sb particles during electrochemical reactions. The moderate rate performance of Sb–rGO composite materials was further improved by electrode formulation modification using a carboxymethylcellulose (CMC) binder. An electrode architecture containing Sb–rGO composite material with CMC binder achieved a high capacity (~ 400 mAh g−1) at a high rate (~ 30 C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.S. Hou, C.E. Banks, M.J. Jing, Y. Zhang, X.B. Ji, Carbon quantum dots and their derivative 3d porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015)

    Article  CAS  Google Scholar 

  2. T.F. Liu, Y.P. Zhang, Z.G. Jiang, X.Q. Zeng, J.P. Ji, Z.H. Li, X.H. Gao, M.H. Sun, Z. Lin, M. Ling, J.C. Zheng, C.D. Liang, Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 12(5), 1512–1533 (2019)

    Article  CAS  Google Scholar 

  3. H.L. Pan, Y.S. Hu, L.Q. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338–2360 (2013)

    Article  CAS  Google Scholar 

  4. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013)

    Article  CAS  Google Scholar 

  5. G. Wang, X.H. Xiong, D. Xie, X.X. Fu, Z.H. Lin, C.H. Yang, K.L. Zhang, M.L. Liu, A scalable approach for dendrite-free alkali metal anodes via room-temperature facile surface fluorination. ACS Appl. Mater. Inter. 11(5), 4962–4968 (2019)

    Article  CAS  Google Scholar 

  6. M. Dahbi, N. Yabuuchi, K. Kubota, K. Tokiwa, S. Komaba, Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 16(29), 15007–15028 (2014)

    Article  CAS  Google Scholar 

  7. M.K. Datta, R. Epur, P. Saha, K. Kadakia, S.K. Park, P.N. Kuma, Tin and graphite based nanocomposites: potential anode for sodium ion batteries. J. Power Sources 225(1), 316–322 (2013)

    Article  CAS  Google Scholar 

  8. S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 6(7), 2067–2081 (2013)

    Article  CAS  Google Scholar 

  9. D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Edit. 54(11), 3431–3448 (2015)

    Article  CAS  Google Scholar 

  10. J.Y. Dong, Y.M. Xue, C. Zhang, Q.H. Weng, P.C. Dai, Y.J. Yang, M. Zhou, C.L. Li, Q.H. Cui, X.H. Kang, C.C. Tang, Y. Bando, D. Golberg, X. Wang, Improved Li+ storage through homogeneous n-doping within highly branched tubular graphitic foam. Adv. Mater. 29(6), 1603692 (2017)

    Article  Google Scholar 

  11. D.A. Stevens, J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147(4), 1271–1273 (2000)

    Article  CAS  Google Scholar 

  12. Y. Wen, K. He, Y.J. Zhu, F.D. Han, Y.H. Xu, I. Matsuda, Y. Ishii, J. Cumings, C.S. Wang, Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014)

    Article  CAS  Google Scholar 

  13. C.J. Chen, Y.W. Wen, X.L. Hu, X.L. Ji, M.Y. Yan, L.Q. Mai, P. Hu, B. Shan, Y.H. Huang, Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015)

    Article  CAS  Google Scholar 

  14. Y. Xu, E.M. Lotfabad, H.L. Wang, B. Farbod, Z.W. Xu, A. Kohandehghan, D. Mitlin, Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem. Commun. 49(79), 8973–8975 (2013)

    Article  CAS  Google Scholar 

  15. Y.C. Yang, X.B. Ji, M.J. Jing, H.S. Hou, Y.R. Zhu, L.B. Fang, X.M. Yang, Q.Y. Chen, C.E. Banks, Carbon dots supported upon n-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 3(10), 5648–5655 (2015)

    Article  CAS  Google Scholar 

  16. W.H. Li, S.H. Hu, X.Y. Luo, Z.L. Li, X.Z. Sun, M.S. Li, F.F. Liu, Y. Yu, Confined amorphous red phosphorus in mof-derived n-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 29(16), 1605820 (2017)

    Article  Google Scholar 

  17. J.F. Qian, X.Y. Wu, Y.L. Cao, X.P. Ai, H.X. Yang, High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Edit. 52(17), 4633–4636 (2013)

    Article  CAS  Google Scholar 

  18. Y.J. Zhu, Y. Wen, X.L. Fan, T. Gao, F.D. Han, C. Luo, S.C. Liou, C.S. Wang, Red phosphorus single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9(3), 3254–3264 (2015)

    Article  CAS  Google Scholar 

  19. W.W. Deng, X.M. Liang, X.Y. Wu, J.F. Qian, Y.L. Cao, X.P. Ai, J.W. Feng, H.X. Yang, A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3, 2671 (2013)

    Article  Google Scholar 

  20. Y. Park, D.S. Shin, S.H. Woo, N.S. Choi, K.H. Shin, S.M. Oh, K.T. Lee, S.Y. Hong, Sodium terephthalate as an organic anode material for sodium ion batteries. Adv. Mater. 24(26), 3562–3567 (2012)

    Article  CAS  Google Scholar 

  21. Z.Q. Zhu, H. Li, J. Liang, Z.L. Tao, J. Chen, The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries. Chem. Commun. 51(8), 1446–1448 (2015)

    Article  CAS  Google Scholar 

  22. J. Duan, W. Zhang, C. Wu, Q.J. Fan, W.X. Zhang, X.L. Hu, Y.H. Huang, Self-wrapped Sb/C nanocomposite as anode material for high-performance sodium-ion batteries. Nano Energy 16, 479–487 (2015)

    Article  CAS  Google Scholar 

  23. C. Nithya, S. Gopukumar, RGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano RGO sheet during galvanostatic cycling. J. Mater. Chem. A. 2(27), 10516–10525 (2014)

    Article  CAS  Google Scholar 

  24. T.J. Wu, H.S. Hou, C.Y. Zhang, P. Ge, Z.D. Huang, M.J. Jing, X.Q. Qiu, X.B. Ji, Antimony anchored with nitrogen-doping porous carbon as a high-performance anode material for Na-ion batteries. ACS Appl. Mater. Inter. 9(31), 26118–26125 (2017)

    Article  CAS  Google Scholar 

  25. J.H. Song, P.F. Yan, L.L. Luo, X.G. Qi, X.H. Rong, J.M. Zheng, B.W. Xiao, S. Feng, C.M. Wang, Y.S. Hu, Y.H. Lin, V.L. Sprenkle, X.L. Li, Yolk-shell structured Sb@C anodes for high energy Na-ion batteries. Nano Energy. 40, 504–511 (2017)

    Article  CAS  Google Scholar 

  26. X.J. Wei, X.P. Wang, X. Tan, Q.Y. An, L.Q. Mai, Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv. Funct. Mater. 28(46), 1804458 (2018)

    Article  Google Scholar 

  27. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)

    Article  CAS  Google Scholar 

  28. B. Lestriez, S. Desaever, J. Danet, P. Moreau, D. Plee, D. Guyomard, Hierarchical and resilient conductive network of bridged carbon nanotubes and nanofibers for high-energy Si negative electrodes. Electrochem. Solid-State Lett. 12(4), A76–A80 (2009)

    Article  CAS  Google Scholar 

  29. V. Sivasankaran, C. Marino, M. Chamas, P. Soudan, D. Guyomard, J.C. Jumas, P.E. Lippens, L. Monconduit, B. Lestriez, Improvement of intermetallics electrochemical behavior by playing with the composite electrode formulation. J. Mater. Chem. 21(13), 5076–5082 (2011)

    Article  CAS  Google Scholar 

  30. R. Wang, L.L. Feng, W.R. Yang, Y.Y. Zhang, Y.L. Zhang, W. Bai, B. Liu, W. Zhang, Y.M. Chuan, Z.G. Zheng, H.J. Guan, Effect of different binders on the electrochemical performance of metal oxide anode for lithium-ion batteries. Nanoscale Res. Lett. 12(1), 575 (2017)

    Article  Google Scholar 

  31. L.J. Cote, F. Kim, J.X. Huang, Langmuir-blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131(3), 1043–1049 (2009)

    Article  CAS  Google Scholar 

  32. S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, A. Ito, Y. Ohsawa, Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Inter. 3(11), 4165–4168 (2011)

    Article  CAS  Google Scholar 

  33. H. Nakai, T. Kubota, A. Kita, A. Kawashima, Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J. Electrochem. Soc. 158(7), A798–A801 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Science and Technology (KIST) Institutional Program [Project no. 2E29642].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung–Seok Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Lee, J. & Kim, H. Development of electrode architecture using Sb–rGO composite and CMC binder for high-performance sodium-ion battery anodes. J. Korean Ceram. Soc. 57, 91–97 (2020). https://doi.org/10.1007/s43207-019-00012-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-019-00012-0

Keywords

Navigation