Skip to main content

Advertisement

Log in

Biophysical and Epigenetic Regulation of Cancer Stemness, Invasiveness, and Immune Action

  • Cell Behavior Manipulation (S Willerth, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The tumor microenvironment (TME) is an amalgam of multiple dysregulated biophysical cues that can alter cellular behavior through mechanotransductive signaling and epigenetic modifications. Through this review, we seek to characterize the extent of biophysical and epigenetic regulation of cancer stemness and tumor-associated immune cells in order to identify ideal targets for cancer therapy.

Recent Findings

Recent studies have identified cancer stemness and immune action as significant contributors to neoplastic disease, due to their susceptibility to microenvironmental influences. Matrix stiffening, altered vasculature, and resultant hypoxia within the TME can influence cancer stem cell (CSC) and immune cell behavior, as well as alter the epigenetic landscapes involved in cancer development.

Summary

This review highlights the importance of aberrant biophysical cues in driving cancer progression through altered behavior of CSCs and immune cells, which in turn sustains further biophysical dysregulation. We examine current and potential therapeutic approaches that break this self-sustaining cycle of disease progression by targeting the presented biophysical and epigenetic signatures of cancer. We also summarize strategies including the normalization of the TME, targeted drug delivery, and inhibition of cancer-enabling epigenetic players.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nowell P. The clonal evolution of tumor cell populations. Science (New York, NY). 1976;194(4260):23–8. https://doi.org/10.1126/science.959840.

    Article  CAS  Google Scholar 

  2. Yang M, Topaloglu U, Petty WJ, Pagni M, Foley KL, Grant SC, et al. Circulating mutational portrait of cancer: manifestation of aggressive clonal events in both early and late stages. J Hematol Oncol. 2017;10(1):100. https://doi.org/10.1186/s13045-017-0468-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duesberg P, McCormack A. Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle. 2013;12(5):783–802. https://doi.org/10.4161/cc.23720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prasad S, Ramachandran S, Gupta N, Kaushik I, Srivastava SK. Cancer cells stemness: a doorstep to targeted therapy. Biochim Biophys Acta (BBA) - Mol Basis Dis. 1866;2020(4):165424. https://doi.org/10.1016/j.bbadis.2019.02.019.

    Article  CAS  Google Scholar 

  5. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37. https://doi.org/10.1038/nrc1782.

    Article  CAS  PubMed  Google Scholar 

  6. Ponnusamy MP, Batra SK. Ovarian cancer: emerging concept on cancer stem cells. J Ovarian Res. 2008;1(1):4. https://doi.org/10.1186/1757-2215-1-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, et al. Characterization of clonogenic multiple myeloma cells. Blood. 2004;103(6):2332–6. https://doi.org/10.1182/blood-2003-09-3064.

    Article  CAS  PubMed  Google Scholar 

  8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983. https://doi.org/10.1073/pnas.0530291100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91. https://doi.org/10.1016/j.stem.2014.02.006.

    Article  CAS  PubMed  Google Scholar 

  10. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. https://doi.org/10.1038/nm.4409.

    Article  CAS  PubMed  Google Scholar 

  11. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci. 2011;108(19):7950–5. https://doi.org/10.1073/pnas.1102454108.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wainwright EN, Scaffidi P. Epigenetics and cancer stem cells: unleashing, hijacking, and restricting cellular plasticity. Trends Cancer. 2017;3(5):372–86. https://doi.org/10.1016/j.trecan.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. The Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. https://doi.org/10.1056/NEJMoa1301689.

    Article  CAS  Google Scholar 

  14. Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science (New York, NY). 2013;340(6134):857–61. https://doi.org/10.1126/science.1232245.

    Article  CAS  Google Scholar 

  15. Torres CM, Biran A, Burney MJ, Patel H, Henser-Brownhill T, Cohen AHS et al. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science (New York, NY). 2016;353(6307):aaf1644-aaf. doi:https://doi.org/10.1126/science.aaf1644.

  16. Funato K, Major T, Lewis PW, Allis CD, Tabar V. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science (New York, NY). 2014;346(6216):1529–33. https://doi.org/10.1126/science.1253799.

    Article  CAS  Google Scholar 

  17. Lu R, Wang P, Parton T, Zhou Y, Chrysovergis K, Rockowitz S, et al. Epigenetic perturbations by Arg882-mutated DNMT3A potentiate aberrant stem cell gene-expression program and acute leukemia development. Cancer Cell. 2016;30(1):92–107. https://doi.org/10.1016/j.ccell.2016.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42. https://doi.org/10.1038/nrm1835.

    Article  CAS  PubMed  Google Scholar 

  19. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15. https://doi.org/10.1016/j.cell.2008.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69(7):2887–95. https://doi.org/10.1158/0008-5472.CAN-08-3343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 2010;70(17):6945–56. https://doi.org/10.1158/0008-5472.CAN-10-0785.

    Article  CAS  PubMed  Google Scholar 

  22. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, et al. Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and β-catenin. Cells Tissues Organs. 2005;179(1-2):56–65. https://doi.org/10.1159/000084509.

    Article  CAS  PubMed  Google Scholar 

  23. Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 2011;71(15):5317–26. https://doi.org/10.1158/0008-5472.CAN-11-1059.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J-Q, Chen S, Gu J-N, Zhu Y, Zhan Q, Cheng D-F, et al. MicroRNA-300 promotes apoptosis and inhibits proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway by targeting CUL4B in pancreatic cancer cells. J Cell Biochem. 2018;119(1):1027–40. https://doi.org/10.1002/jcb.26270.

    Article  CAS  PubMed  Google Scholar 

  25. Fodde R, Brabletz T. Wnt/β-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol. 2007;19(2):150–8. https://doi.org/10.1016/j.ceb.2007.02.007.

    Article  CAS  PubMed  Google Scholar 

  26. Lee SC, Kim O-H, Lee SK, Kim S-J. IWR-1 inhibits epithelial-mesenchymal transition of colorectal cancer cells through suppressing Wnt/β-catenin signaling as well as survivin expression. Oncotarget. 2015;6(29). https://doi.org/10.18632/oncotarget.4354.

  27. Zhou AD, Diao LT, Xu H, Xiao ZD, Li JH, Zhou H, et al. β-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/β-catenin-signaling pathway. Oncogene. 2012;31(24):2968–78. https://doi.org/10.1038/onc.2011.461.

    Article  CAS  PubMed  Google Scholar 

  28. de Sousa E Melo F, Colak S, Buikhuisen J, Koster J, Cameron K, de Jong Joan H et al. Methylation of cancer-stem-cell-associated wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 2011;9(5):476-485. doi:https://doi.org/10.1016/j.stem.2011.10.008.

  29. Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F, et al. LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res. 2018;37(1):225. https://doi.org/10.1186/s13046-018-0864-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Zhong Y, Hou T, Liao J, Zhang C, Sun C, et al. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro. Ecotoxicol Environ Saf. 2019;178:159–67. https://doi.org/10.1016/j.ecoenv.2019.03.086.

    Article  CAS  PubMed  Google Scholar 

  31. Fender AW, Nutter JM, Fitzgerald TL, Bertrand FE, Sigounas G. Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer: notch signaling plays a key role in the phenotype of colon cancer cells. J Cell Biochem. 2015;116(11):2517–27. https://doi.org/10.1002/jcb.25196.

    Article  CAS  PubMed  Google Scholar 

  32. Katsuno Y, Meyer DS, Zhang Z, Shokat KM, Akhurst RJ, Miyazono K, et al. Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci Signal. 2019;12(570):eaau8544. https://doi.org/10.1126/scisignal.aau8544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Bhuria V, Xing J, Scholta T, Bui KC, Nguyen MLT, Malek NP et al. Hypoxia induced Sonic Hedgehog signaling regulates cancer stemness, epithelial-to-mesenchymal transition and invasion in cholangiocarcinoma. Exp Cell Res. 2019;385(2):111671. doi:https://doi.org/10.1016/j.yexcr.2019.111671. Highlights the biophysical influence of hypoxia in upregulating expression of cancer stem cell-associated transcription factors (Nanog, Oct4, Sox2) and epithelial-to-mesenchymal transition markers (N-cadherin, Vimentin) via activation of Sonic Hedgehog signaling.

  34. Besharat ZM, Sabato C, Po A, Gianno F, Abballe L, Napolitano M, et al. Low Expression of miR-466f-3p Sustains Epithelial to Mesenchymal Transition in Sonic Hedgehog Medulloblastoma Stem Cells Through Vegfa-Nrp2 Signaling Pathway. Front Pharmacol. 2018;9:1281. https://doi.org/10.3389/fphar.2018.01281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci. 2010;107(11):4872–7. https://doi.org/10.1073/pnas.0903269107.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. https://doi.org/10.1016/j.cell.2006.06.044.

    Article  CAS  PubMed  Google Scholar 

  37. Kshitiz, Park J, Kim P, Helen W, Engler AJ, Levchenko A et al. Control of stem cell fate and function by engineering physical microenvironments. Integr Biol 2012;4(9):1008-1018. doi:https://doi.org/10.1039/c2ib20080e.

  38. O'Connor JW, Riley PN, Nalluri SM, Ashar PK, Gomez EW. Matrix rigidity mediates TGFβ1-induced epithelial-myofibroblast transition by controlling cytoskeletal organization and MRTF-A localization: matrix rigidity mediates EMT via MRTF-A. J Cell Physiol. 2015;230(8):1829–39. https://doi.org/10.1002/jcp.24895.

    Article  CAS  PubMed  Google Scholar 

  39. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–22. https://doi.org/10.1038/nrc2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jain RK, Martin JD, Stylianopoulos T. The Role of Mechanical Forces in Tumor Growth and Therapy. Annu Rev Biomed Eng. 2014;16(1):321–46. https://doi.org/10.1146/annurev-bioeng-071813-105259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang X, Kuhlenschmidt TB, Zhou J, Bell P, Wang F, Kuhlenschmidt MS, et al. Mechanical force affects expression of an in vitro metastasis-like phenotype in HCT-8 cells. Biophys J. 2010;99(8):2460–9. https://doi.org/10.1016/j.bpj.2010.08.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nallanthighal S, Heiserman JP, Cheon DJ. The role of the extracellular matrix in cancer stemness. Front Cell Dev Biol. 2019;7:86. https://doi.org/10.3389/fcell.2019.00086.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kirkland SC. Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells. Br J Cancer. 2009;101(2):320–6. https://doi.org/10.1038/sj.bjc.6605143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25(4):234–40. https://doi.org/10.1016/j.tcb.2014.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barnawi R, Al-Khaldi S, Colak D, Tulbah A, Al-Tweigeri T, Fallatah M, et al. β1 Integrin is essential for fascin-mediated breast cancer stem cell function and disease progression. Int J Cancer. 2019;145(3):830–41. https://doi.org/10.1002/ijc.32183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pang M-F, Siedlik MJ, Han S, Stallings-Mann M, Radisky DC, Nelson CM. Tissue stiffness and hypoxia modulate the integrin-linked kinase ILK to control breast cancer stem-like cells. Cancer Res. 2016;76(18):5277–87. https://doi.org/10.1158/0008-5472.CAN-16-0579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Inoue A, Takahashi H, Harada H, Kohno S, Ohue S, Kobayashi K, et al. Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. Int J Oncol. 2010;37(5):1121–31. https://doi.org/10.3892/ijo_00000764.

    Article  CAS  PubMed  Google Scholar 

  48. Long H, Xie R, Xiang T, Zhao Z, Lin S, Liang Z, et al. Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation. Stem Cells (Dayton, Ohio). 2012;30(10):2309–19. https://doi.org/10.1002/stem.1194.

    Article  CAS  Google Scholar 

  49. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK, et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci. 2012;109(3):911–6. https://doi.org/10.1073/pnas.1118910109.

    Article  PubMed  Google Scholar 

  50. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci. 2001;98(18):10356–61. https://doi.org/10.1073/pnas.171610498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang M-H, Wu K-J. TWIST activation by hypoxia inducible factor-1 (HIF-1): Implications in metastasis and development. Cell Cycle. 2008;7(14):2090–6. https://doi.org/10.4161/cc.7.14.6324.

    Article  CAS  PubMed  Google Scholar 

  52. •• Roy B, Venkatachalapathy S, Ratna P, Wang Y, Jokhun DS, Nagarajan M et al. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors. Proceedings of the National Academy of Sciences. 2018;115(21):E4741. doi:https://doi.org/10.1073/pnas.1714770115. This study demonstrates that the sustained laterally confined growth of mouse fibroblasts on micropatterned substrates can activate stem cell-like properties, thereby emphasizing the importance of biophysical cues in regulating stemness. Laterally confined growth was also shown to induce cancer stemness in the breast cancer cell line MCF7.

  53. Hancock RL, Dunne K, Walport LJ, Flashman E, Kawamura A. Epigenetic regulation by histone demethylases in hypoxia. Epigenomics. 2015;7(5):791–811. https://doi.org/10.2217/epi.15.24.

    Article  CAS  PubMed  Google Scholar 

  54. Tan Y, Tajik A, Chen J, Jia Q, Chowdhury F, Wang L, et al. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat Commun. 2014;5:4619. https://doi.org/10.1038/ncomms5619.

    Article  CAS  PubMed  Google Scholar 

  55. Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development. 2014;141(8):1614–26. https://doi.org/10.1242/dev.102376.

    Article  CAS  PubMed  Google Scholar 

  56. Park JH, Shin JE, Park HW. The role of hippo pathway in cancer stem cell biology. Mol Cell. 2018;41(2):83–92. https://doi.org/10.14348/MOLCELLS.2018.2242.

    Article  CAS  Google Scholar 

  57. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147(4):759–72. https://doi.org/10.1016/j.cell.2011.09.048.

    Article  CAS  PubMed  Google Scholar 

  58. Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, et al. Hippo pathway activity influences liver cell fate. Cell. 2014;157(6):1324–38. https://doi.org/10.1016/j.cell.2014.03.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fischer M, Rikeit P, Knaus P, Coirault C. YAP-Mediated mechanotransduction in skeletal muscle. Front Physiol. 2016;7:41. https://doi.org/10.3389/fphys.2016.00041.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 2013;154(5):1047–59. https://doi.org/10.1016/j.cell.2013.07.042.

    Article  CAS  PubMed  Google Scholar 

  61. Benham-Pyle BW, Pruitt BL, Nelson WJ. Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science (New York, NY). 2015;348(6238):1024–7. https://doi.org/10.1126/science.aaa4559.

    Article  CAS  Google Scholar 

  62. Morita T, Mayanagi T, Sobue K. Dual roles of myocardin-related transcription factors in epithelial–mesenchymal transition via slug induction and actin remodeling. J Cell Biol. 2007;179(5):1027–42. https://doi.org/10.1083/jcb.200708174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miralles F, Posern G, Zaromytidou A-I, Treisman R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell. 2003;113(3):329–42. https://doi.org/10.1016/S0092-8674(03)00278-2.

    Article  CAS  PubMed  Google Scholar 

  64. Fan L, Sebe A, Péterfi Z, Masszi A, Thirone AC, Rotstein OD, et al. Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Mol Biol Cell. 2007;18(3):1083–97. https://doi.org/10.1091/mbc.e06-07-0602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. O’Connor JW, Gomez EW. Cell adhesion and shape regulate TGF-Beta1-induced epithelial-myofibroblast transition via MRTF-A signaling. PLoS One. 2013;8(12):e83188. https://doi.org/10.1371/journal.pone.0083188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cheng X, Yang Y, Fan Z, Yu L, Bai H, Zhou B, et al. MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription. Oncogene. 2015;34(44):5570–81. https://doi.org/10.1038/onc.2015.14.

    Article  CAS  PubMed  Google Scholar 

  67. Liao XH, Wang N, Liu LY, Zheng L, Xing WJ, Zhao DW, et al. MRTF-A and STAT3 synergistically promote breast cancer cell migration. Cell Signal. 2014;26(11):2370–80. https://doi.org/10.1016/j.cellsig.2014.07.023.

    Article  CAS  PubMed  Google Scholar 

  68. Song Z, Liu Z, Sun J, Sun FL, Li CZ, Sun JZ, et al. The MRTF-A/B function as oncogenes in pancreatic cancer. Oncol Rep. 2016;35(1):127–38. https://doi.org/10.3892/or.2015.4329.

    Article  CAS  PubMed  Google Scholar 

  69. Makhija E, Jokhun DS, Shivashankar GV. Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc Natl Acad Sci. 2016;113(1):E32. https://doi.org/10.1073/pnas.1513189113.

    Article  CAS  PubMed  Google Scholar 

  70. •• Wang P, Dreger M, Madrazo E, Williams CJ, Samaniego R, Hodson NW et al. WDR5 modulates cell motility and morphology and controls nuclear changes induced by a 3D environment. Proc Natl Acad Sci U S A. 2018;115(34):8581-8586. https://doi.org/10.1073/pnas.1719405115. WD repeat domain 5 (WDR5) is an epigenetic modulator of H3K4 methylation that is essential to the regulation of nuclear deformability, cell polarity, and cell migration in vitro. This study reveals that the interactions between cells and a surrounding 3D environment leads to upregulation of WDR5-mediated H3K4 methylation, thus highlighting the recurring theme of biophysical and epigenetic regulation of cellular behavior.

  71. Jain N, Iyer KV, Kumar A, Shivashankar GV. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc Natl Acad Sci. 2013;110(28):11349. https://doi.org/10.1073/pnas.1300801110.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Downing TL, Soto J, Morez C, Houssin T, Fritz A, Yuan F, et al. Biophysical regulation of epigenetic state and cell reprogramming. Nat Mater. 2013;12(12):1154–62. https://doi.org/10.1038/nmat3777.

    Article  CAS  PubMed  Google Scholar 

  73. Wu M-Z, Tsai Y-P, Yang M-H, Huang C-H, Chang S-Y, Chang C-C, et al. Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell. 2011;43(5):811–22. https://doi.org/10.1016/j.molcel.2011.07.012.

    Article  CAS  PubMed  Google Scholar 

  74. Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, et al. Hypoxia drives breast tumor malignancy through a TET-TNFα-p38-MAPK signaling axis. Cancer Res. 2015;75(18):3912–24. https://doi.org/10.1158/0008-5472.Can-14-3208.

    Article  CAS  PubMed  Google Scholar 

  75. Liu Q, Liu L, Zhao Y, Zhang J, Wang D, Chen J, et al. Hypoxia induces genomic DNA demethylation through the activation of HIF-1alpha and transcriptional upregulation of MAT2A in hepatoma cells. Mol Cancer Ther. 2011;10(6):1113–23. https://doi.org/10.1158/1535-7163.MCT-10-1010.

    Article  CAS  PubMed  Google Scholar 

  76. Bissell MJ, Hines WC. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9. https://doi.org/10.1038/nm.2328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.

    Article  CAS  PubMed  Google Scholar 

  78. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  79. Haas OA. Primary immunodeficiency and cancer predisposition revisited: embedding two closely related concepts into an integrative conceptual framework. Front Immunol. 2018;9:3136. https://doi.org/10.3389/fimmu.2018.03136.

    Article  CAS  PubMed  Google Scholar 

  80. Dantal J, Soulillou JP. Immunosuppressive drugs and the risk of cancer after organ transplantation. N Engl J Med. 2005;352(13):1371–3. https://doi.org/10.1056/NEJMe058018.

    Article  CAS  PubMed  Google Scholar 

  81. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107–11. https://doi.org/10.1038/35074122.

    Article  CAS  PubMed  Google Scholar 

  82. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, et al. Regulation of cutaneous malignancy by gammadelta T cells. Science (New York, NY). 2001;294(5542):605–9. https://doi.org/10.1126/science.1063916.

    Article  CAS  Google Scholar 

  83. Street SE, Cretney E, Smyth MJ. Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood. 2001;97(1):192–7. https://doi.org/10.1182/blood.v97.1.192.

    Article  CAS  PubMed  Google Scholar 

  84. Enzler T, Gillessen S, Manis JP, Ferguson D, Fleming J, Alt FW, et al. Deficiencies of GM-CSF and interferon gamma link inflammation and cancer. J Exp Med. 2003;197(9):1213–9. https://doi.org/10.1084/jem.20021258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kather JN, Suarez-Carmona M, Charoentong P, Weis CA, Hirsch D, Bankhead P, et al. Topography of cancer-associated immune cells in human solid tumors. Elife. 2018;7. https://doi.org/10.7554/eLife.36967.

  86. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest. 2012;122(3):899–910. https://doi.org/10.1172/JCI45817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (New York, NY). 2006;313(5795):1960. https://doi.org/10.1126/science.1129139.

    Article  CAS  Google Scholar 

  88. Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263–71. https://doi.org/10.1158/0008-5472.CAN-10-2907.

    Article  CAS  PubMed  Google Scholar 

  89. Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V. Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci. 2014;1319:47–65. https://doi.org/10.1111/nyas.12469.

    Article  CAS  PubMed  Google Scholar 

  90. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. https://doi.org/10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  91. Q-w Z, Liu L, Gong C-y, Shi H-s, Zeng Y-h, Wang X-z, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One. 2012;7(12):e50946. https://doi.org/10.1371/journal.pone.0050946.

    Article  CAS  Google Scholar 

  92. • Kuczek DE, Larsen AMH, Thorseth ML, Carretta M, Kalvisa A, Siersbaek MS, et al. Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer. 2019;7(1):68. https://doi.org/10.1186/s40425-019-0556-6This study connects 3D ECM density with the proliferation and functional activation of T cells using transcriptome analysis.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Judokusumo E, Tabdanov E, Kumari S, Dustin ML, Kam LC. Mechanosensing in T lymphocyte activation. Biophys J. 2012;102(2):L5–7. https://doi.org/10.1016/j.bpj.2011.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. O'Connor RS, Hao X, Shen K, Bashour K, Akimova T, Hancock WW, et al. Substrate rigidity regulates human T cell activation and proliferation. J Immunol. 2012;189(3):1330–9. https://doi.org/10.4049/jimmunol.1102757.

    Article  CAS  PubMed  Google Scholar 

  95. Lin HH, Lin HK, Lin IH, Chiou YW, Chen HW, Liu CY, et al. Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing. Oncotarget. 2015;6(25):20946–58. https://doi.org/10.18632/oncotarget.4173.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mennens SFB, Bolomini-Vittori M, Weiden J, Joosten B, Cambi A, van den Dries K. Substrate stiffness influences phenotype and function of human antigen-presenting dendritic cells. Sci Rep. 2017;7(1):17511. https://doi.org/10.1038/s41598-017-17787-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Meli VS, Veerasubramanian PK, Atcha H, Reitz Z, Downing TL, Liu WF. Biophysical regulation of macrophages in health and disease. J Leukoc Biol. 2019;106(2):283–99. https://doi.org/10.1002/jlb.Mr0318-126r.

    Article  CAS  PubMed  Google Scholar 

  98. Luu TU, Liu WF. Regulation of macrophages by extracellular matrix composition and adhesion geometry. Regen Eng Transl Med. 2018;4(4):238–46. https://doi.org/10.1007/s40883-018-0065-z.

    Article  CAS  Google Scholar 

  99. McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A. 2013;110(43):17253–8. https://doi.org/10.1073/pnas.1308887110.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Armstrong JW, Chapes SK. Effects of extracellular matrix proteins on macrophage differentiation, growth, and function: comparison of liquid and agar culture systems. J Exp Zool. 1994;269(3):178–87. https://doi.org/10.1002/jez.1402690303.

    Article  CAS  PubMed  Google Scholar 

  101. Cha BH, Shin SR, Leijten J, Li YC, Singh S, Liu JC, et al. Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv Healthc Mater. 2017, 21;6. https://doi.org/10.1002/adhm.201700289.

  102. Hsieh JY, Smith TD, Meli VS, Tran TN, Botvinick EL, Liu WF. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater. 2017;47:14–24. https://doi.org/10.1016/j.actbio.2016.09.024.

    Article  CAS  PubMed  Google Scholar 

  103. Hsieh JY, Keating MT, Smith TD, Meli VS, Botvinick EL, Liu WF. Matrix crosslinking enhances macrophage adhesion, migration, and inflammatory activation. APL Bioeng. 2019;3(1):016103. https://doi.org/10.1063/1.5067301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Previtera ML, Sengupta A. Substrate stiffness regulates proinflammatory mediator production through TLR4 activity in macrophages. PLoS One. 2016;10(12):e0145813. https://doi.org/10.1371/journal.pone.0145813.

    Article  CAS  Google Scholar 

  105. • Pinto ML, Rios E, Silva AC, Neves SC, Caires HR, Pinto AT, et al. Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. Biomaterials. 2017;124:211–24. https://doi.org/10.1016/j.biomaterials.2017.02.004This study demonstrates the potential of the tumor matrix in educating macrophages towards the anti-inflammatory M2 phenotype that stimulated cancer cell invasion.

    Article  CAS  PubMed  Google Scholar 

  106. Savage ND, de Boer T, Walburg KV, Joosten SA, van Meijgaarden K, Geluk A, et al. Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol. 2008;181(3):2220–6. https://doi.org/10.4049/jimmunol.181.3.2220.

    Article  CAS  PubMed  Google Scholar 

  107. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115(17):E4041–E50. https://doi.org/10.1073/pnas.1720948115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, et al. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am J Phys Cell Physiol. 2015;309(9):C569–79. https://doi.org/10.1152/ajpcell.00207.2015.

    Article  CAS  Google Scholar 

  109. Lin L, Chen YS, Yao YD, Chen JQ, Chen JN, Huang SY, et al. CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotarget. 2015;6(33):34758–73. https://doi.org/10.18632/oncotarget.5325.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lebbink RJ, de Ruiter T, Adelmeijer J, Brenkman AB, van Helvoort JM, Koch M, et al. Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J Exp Med. 2006;203(6):1419–25. https://doi.org/10.1084/jem.20052554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rygiel TP, Stolte EH, de Ruiter T, van de Weijer ML, Meyaard L. Tumor-expressed collagens can modulate immune cell function through the inhibitory collagen receptor LAIR-1. Mol Immunol. 2011;49(1-2):402–6. https://doi.org/10.1016/j.molimm.2011.09.006.

    Article  CAS  PubMed  Google Scholar 

  112. Agashe VV, Jankowska-Gan E, Keller M, Sullivan JA, Haynes LD, Kernien JF et al. Leukocyte-associated Ig-like receptor 1 inhibits T<sub>h</sub>1 responses but is required for natural and induced monocyte-dependent T<sub>h</sub>17 responses. J Immunol. 2018:ji1701753. doi:https://doi.org/10.4049/jimmunol.1701753.

  113. Li Y, Chu JS, Kurpinski K, Li X, Bautista DM, Yang L, et al. Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys J. 2011;100(8):1902–9. https://doi.org/10.1016/j.bpj.2011.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zanconato F, Battilana G, Forcato M, Filippi L, Azzolin L, Manfrin A, et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat Med. 2018;24(10):1599–610. https://doi.org/10.1038/s41591-018-0158-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ni X, Tao J, Barbi J, Chen Q, Park BV, Li Z, et al. YAP is essential for Treg-mediated suppression of antitumor immunity. Cancer Discov. 2018;8(8):1026–43. https://doi.org/10.1158/2159-8290.CD-17-1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stampouloglou E, Cheng N, Federico A, Slaby E, Monti S, Szeto GL, et al. Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biol. 2020;18(1):e3000591. https://doi.org/10.1371/journal.pbio.3000591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu L, Weng X, Liang P, Dai X, Wu X, Xu H, et al. MRTF-A mediates LPS-induced pro-inflammatory transcription by interacting with the COMPASS complex. J Cell Sci. 2014;127(Pt 21):4645–57. https://doi.org/10.1242/jcs.152314.

    Article  CAS  PubMed  Google Scholar 

  118. Jain N, Vogel V. Spatial confinement downsizes the inflammatory response of macrophages. Nat Mater. 2018;17(12):1134–44. https://doi.org/10.1038/s41563-018-0190-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cabanel M, Brand C, Oliveira-Nunes MC, Cabral-Piccin MP, Lopes MF, Brito JM, et al. Epigenetic control of macrophage shape transition towards an atypical elongated phenotype by histone deacetylase activity. PLoS One. 2015;10(7):e0132984. https://doi.org/10.1371/journal.pone.0132984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bellone M, Calcinotto A. Ways to enhance lymphocyte trafficking into tumors and fitness of tumor infiltrating lymphocytes. Front Oncol. 2013;3:231. https://doi.org/10.3389/fonc.2013.00231.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Craig DH, Shiratsuchi H, Basson MD. Increased extracellular pressure provides a novel adjuvant stimulus for enhancement of conventional dendritic cell maturation strategies. Biochem Biophys Res Commun. 2009;387(1):174–9. https://doi.org/10.1016/j.bbrc.2009.07.010.

    Article  CAS  PubMed  Google Scholar 

  122. Thepmalee C, Panya A, Junking M, Chieochansin T, Yenchitsomanus P-T. Inhibition of IL-10 and TGF-β receptors on dendritic cells enhances activation of effector T-cells to kill cholangiocarcinoma cells. Hum Vaccin Immunother. 2018;14(6):1423–31. https://doi.org/10.1080/21645515.2018.1431598.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Li YC, Chen BM, Wu PC, Cheng TL, Kao LS, Tao MH, et al. Cutting edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J Immunol. 2010;184(11):5959–63. https://doi.org/10.4049/jimmunol.0900775.

    Article  CAS  PubMed  Google Scholar 

  124. Li R, Serrano JC, Xing H, Lee TA, Azizgolshani H, Zaman M, et al. Interstitial flow promotes macrophage polarization toward an M2 phenotype. Mol Biol Cell. 2018;29(16):1927–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10(6):417–27. https://doi.org/10.1038/nrd3455.

    Article  CAS  PubMed  Google Scholar 

  126. Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 2013;73(10):2943–8. https://doi.org/10.1158/0008-5472.Can-12-4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Murdoch C, Lewis CE. Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer. 2005;117(5):701–8. https://doi.org/10.1002/ijc.21422.

    Article  CAS  PubMed  Google Scholar 

  128. •• Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7(1):10. https://doi.org/10.1038/s41389-017-0011-9This review summarizes the contributions of hypoxia and the HIFs on the various components of the TME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 2010;70(19):7465–75. https://doi.org/10.1158/0008-5472.CAN-10-1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 2011;475(7355):226–30. https://doi.org/10.1038/nature10169.

    Article  CAS  PubMed  Google Scholar 

  131. Multhoff G, Vaupel P. Hypoxia compromises anti-cancer immune responses. Adv Exp Med Biol. 2020;1232:131–43. https://doi.org/10.1007/978-3-030-34461-0_18.

    Article  CAS  PubMed  Google Scholar 

  132. Ye LY, Chen W, Bai XL, Xu XY, Zhang Q, Xia XF, et al. Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res. 2016;76(4):818–30. https://doi.org/10.1158/0008-5472.CAN-15-0977.

    Article  CAS  PubMed  Google Scholar 

  133. Pierobon D, Bosco MC, Blengio F, Raggi F, Eva A, Filippi M, et al. Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM-1 expression. Eur J Immunol. 2013;43(4):949–66. https://doi.org/10.1002/eji.201242709.

    Article  CAS  PubMed  Google Scholar 

  134. Henze A-T, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 2016;126(10):3672–9. https://doi.org/10.1172/JCI84427.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Batie M, Frost J, Frost M, Wilson JW, Schofield P, Rocha S. Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science (New York, NY). 2019;363(6432):1222. https://doi.org/10.1126/science.aau5870.

    Article  CAS  Google Scholar 

  136. Chakraborty AA, Laukka T, Myllykoski M, Ringel AE, Booker MA, Tolstorukov MY, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science (New York, NY). 2019;363(6432):1217. https://doi.org/10.1126/science.aaw1026.

    Article  CAS  Google Scholar 

  137. Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet. 2014;23(8):2176–88. https://doi.org/10.1093/hmg/ddt614.

    Article  CAS  PubMed  Google Scholar 

  138. Kittan NA, Allen RM, Dhaliwal A, Cavassani KA, Schaller M, Gallagher KA, et al. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One. 2013;8(10):e78045. https://doi.org/10.1371/journal.pone.0078045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L, et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 2009;28(21):3341–52. https://doi.org/10.1038/emboj.2009.271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Northrop JK, Thomas RM, Wells AD, Shen H. Epigenetic remodeling of the IL-2 and IFN-γ loci in memory CD8 T cells is influenced by CD4 T cells. J Immunol. 2006;177(2):1062. https://doi.org/10.4049/jimmunol.177.2.1062.

    Article  CAS  PubMed  Google Scholar 

  141. Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM, et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010;18(5):510–23. https://doi.org/10.1016/j.ccr.2010.10.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stewart JM, Shaw PA, Gedye C, Bernardini MQ, Neel BG, Ailles LE. Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc Natl Acad Sci. 2011;108(16):6468–73. https://doi.org/10.1073/pnas.1005529108.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17(9):1086–93. https://doi.org/10.1038/nm.2415.

    Article  CAS  PubMed  Google Scholar 

  144. Zagorac S, Alcala S, Fernandez Bayon G, Bou Kheir T, Schoenhals M, Gonzalez-Neira A, et al. DNMT1 inhibition reprograms pancreatic cancer stem cells via upregulation of the miR-17-92 cluster. Cancer Res. 2016;76(15):4546–58. https://doi.org/10.1158/0008-5472.CAN-15-3268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pathania R, Ramachandran S, Mariappan G, Thakur P, Shi H, Choi JH, et al. Combined Inhibition of DNMT and HDAC blocks the tumorigenicity of cancer stem-like cells and attenuates mammary tumor growth. Cancer Res. 2016;76(11):3224–35. https://doi.org/10.1158/0008-5472.CAN-15-2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Anastas JN, Zee BM, Kalin JH, Kim M, Guo R, Alexandrescu S, et al. Re-programing chromatin with a bifunctional LSD1/HDAC inhibitor induces therapeutic differentiation in DIPG. Cancer Cell. 2019;36(5):528–44 e10. https://doi.org/10.1016/j.ccell.2019.09.005.

    Article  CAS  PubMed  Google Scholar 

  147. Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW, et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med. 2001;7(4):437–43. https://doi.org/10.1038/86507.

    Article  PubMed  Google Scholar 

  148. Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P, et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 2006;66(17):8814–21. https://doi.org/10.1158/0008-5472.CAN-05-4598.

    Article  CAS  PubMed  Google Scholar 

  149. Weisberg E, Catley L, Kujawa J, Atadja P, Remiszewski S, Fuerst P, et al. Histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells in vitro and in vivo. Leukemia. 2004;18(12):1951–63. https://doi.org/10.1038/sj.leu.2403519.

    Article  CAS  PubMed  Google Scholar 

  150. Adeegbe DO, Liu Y, Lizotte PH, Kamihara Y, Aref AR, Almonte C, et al. Synergistic immunostimulatory effects and therapeutic benefit of combined histone deacetylase and bromodomain inhibition in non-small cell lung cancer. Cancer Discov. 2017;7(8):852–67. https://doi.org/10.1158/2159-8290.CD-16-1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Topper MJ, Vaz M, Marrone KA, Brahmer JR, Baylin SB. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol. 2020;17(2):75–90. https://doi.org/10.1038/s41571-019-0266-5.

    Article  PubMed  Google Scholar 

  152. Brucher BL, Jamall IS. Epistemology of the origin of cancer: a new paradigm. BMC Cancer. 2014;14:331. https://doi.org/10.1186/1471-2407-14-331.

    Article  PubMed  PubMed Central  Google Scholar 

  153. •• Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018;15(6):366–81. https://doi.org/10.1038/s41571-018-0007-1. A comprehensive review that explores the evidence available on stromal normalization in cancer therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  154. •• Seano G, Nia HT, Emblem KE, Datta M, Ren J, Krishnan S, et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat Biomed Eng. 2019;3(3):230–45. https://doi.org/10.1038/s41551-018-0334-7. An excellent study that shows therapeutic intervention and microenvironment normalization in action in brain tumors. It also serves as an example of how tissue normalization can guide better clinical outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. •• Uhler C, Shivashankar GV. Nuclear mechanopathology and cancer diagnosis. Trends Cancer. 2018;4(4):320–31. https://doi.org/10.1016/j.trecan.2018.02.009Explores the regulation of nuclear morphology by components of the cellular microenvironment, including cytoskeletal architecture and the extracellular matrix. This review also addresses the innovative use of machine learning to classify cancer cells via analysis of nuclear morphology.

    Article  CAS  PubMed  Google Scholar 

  156. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350–6. https://doi.org/10.1038/nm.3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Colak S, Ten Dijke P. Targeting TGF-beta signaling in cancer. Trends Cancer. 2017;3(1):56–71. https://doi.org/10.1016/j.trecan.2016.11.008.

    Article  CAS  PubMed  Google Scholar 

  158. Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S, Naxerova K, et al. TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A. 2012;109(41):16618–23. https://doi.org/10.1073/pnas.1117610109.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47(4):320–9. https://doi.org/10.1038/ng.3225.

    Article  CAS  PubMed  Google Scholar 

  160. Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A. 2011;108(7):2909–14. https://doi.org/10.1073/pnas.1018892108.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Murphy JE, Wo JY, Ryan DP, Clark JW, Jiang W, Yeap BY, et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol. 2019;5(7):1020–7. https://doi.org/10.1001/jamaoncol.2019.0892.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Cox TR, Gartland A, Erler JT. Lysyl oxidase, a targetable secreted molecule involved in cancer metastasis. Cancer Res. 2016;76(2):188–92. https://doi.org/10.1158/0008-5472.CAN-15-2306.

    Article  CAS  PubMed  Google Scholar 

  163. Cox TR, Rumney RM, Schoof EM, Perryman L, Høye AM, Agrawal A, et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature. 2015;522(7554):106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bondareva A, Downey CM, Ayres F, Liu W, Boyd SK, Hallgrimsson B, et al. The lysyl oxidase inhibitor, β-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One. 2009;4(5).

  165. Karousou E, D'Angelo ML, Kouvidi K, Vigetti D, Viola M, Nikitovic D, et al. Collagen VI and hyaluronan: the common role in breast cancer. Biomed Res Int. 2014;2014:606458. https://doi.org/10.1155/2014/606458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nakazawa H, Yoshihara S, Kudo D, Morohashi H, Kakizaki I, Kon A, et al. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother Pharmacol. 2006;57(2):165–70. https://doi.org/10.1007/s00280-005-0016-5.

    Article  CAS  PubMed  Google Scholar 

  167. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–29. https://doi.org/10.1016/j.ccr.2012.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Clift R, Lee J, Thompson CB, Huang Y. PEGylated recombinant hyaluronidase PH20 (PEGPH20) enhances tumor infiltrating CD8+ T cell accumulation and improves checkpoint inhibitor efficacy in murine syngeneic breast cancer models. AACR; 2017.

    Book  Google Scholar 

  169. Tempero MA, Van Cutsem E, Sigal D, Oh D-Y, Fazio N, Macarulla T, et al. HALO 109-301: A randomized, double-blind, placebo-controlled, phase 3 study of pegvorhyaluronidase alfa (PEGPH20)+ nab-paclitaxel/gemcitabine (AG) in patients (pts) with previously untreated hyaluronan (HA)-high metastatic pancreatic ductal adenocarcinoma (mPDA). In: American Society of Clinical Oncology; 2020.

    Google Scholar 

  170. Dolor A, Szoka FC Jr. Digesting a path forward: the utility of collagenase tumor treatment for improved drug delivery. Mol Pharm. 2018;15(6):2069–83. https://doi.org/10.1021/acs.molpharmaceut.8b00319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ager EI, Kozin SV, Kirkpatrick ND, Seano G, Kodack DP, Askoxylakis V, et al. Blockade of MMP14 activity in murine breast carcinomas: implications for macrophages, vessels, and radiotherapy. J Natl Cancer Inst. 2015;107(4). https://doi.org/10.1093/jnci/djv017.

  172. Dredge K, Hammond E, Handley P, Gonda TJ, Smith MT, Vincent C, et al. PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer. 2011;104(4):635–42. https://doi.org/10.1038/bjc.2011.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hammond E, Haynes NM, Cullinane C, Brennan TV, Bampton D, Handley P, et al. Immunomodulatory activities of pixatimod: emerging nonclinical and clinical data, and its potential utility in combination with PD-1 inhibitors. J Immunother Cancer. 2018;6(1):54. https://doi.org/10.1186/s40425-018-0363-5.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol. 2018;52:117–24. https://doi.org/10.1016/j.semcancer.2017.12.002.

    Article  CAS  PubMed  Google Scholar 

  175. •• Rey S, Schito L, Wouters BG, Eliasof S, Kerbel RS. Targeting hypoxia-inducible factors for antiangiogenic cancer therapy. Trends Cancer. 2017;3(7):529–41. https://doi.org/10.1016/j.trecan.2017.05.002. The hypoxic tumor microenvironment triggers angiogenesis and can aid in tumor resistance to antiangiogenic cancer therapy. This review discusses the target potential of hypoxia-inducible factors in improving antiangiogenic cancer therapy.

    Article  CAS  PubMed  Google Scholar 

  176. Wigerup C, Pahlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 2016;164:152–69. https://doi.org/10.1016/j.pharmthera.2016.04.009.

    Article  CAS  PubMed  Google Scholar 

  177. Gkretsi V, Zacharia LC, Stylianopoulos T. Targeting inflammation to improve tumor drug delivery. Trends Cancer. 2017;3(9):621–30. https://doi.org/10.1016/j.trecan.2017.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pakneshan P, Birsner AE, Adini I, Becker CM, D'Amato RJ. Differential suppression of vascular permeability and corneal angiogenesis by nonsteroidal anti-inflammatory drugs. Invest Ophthalmol Vis Sci. 2008;49(9):3909–13. https://doi.org/10.1167/iovs.07-1527.

    Article  PubMed  Google Scholar 

  179. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92. https://doi.org/10.1056/NEJMoa1402582.

    Article  CAS  PubMed  Google Scholar 

  180. Ohshio Y, Hanaoka J, Kontani K, Teramoto K. Tranilast inhibits the function of cancer-associated fibroblasts responsible for the induction of immune suppressor cell types. Scand J Immunol. 2014;80(6):408–16. https://doi.org/10.1111/sji.12242.

    Article  CAS  PubMed  Google Scholar 

  181. Shirmanova MV, Druzhkova IN, Lukina MM, Matlashov ME, Belousov VV, Snopova LB, et al. Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2. Biochim Biophys Acta. 2015;1850(9):1905–11. https://doi.org/10.1016/j.bbagen.2015.05.001.

    Article  CAS  PubMed  Google Scholar 

  182. • Zhong S, Jeong JH, Chen Z, Chen Z, Luo JL. Targeting tumor microenvironment by small-molecule inhibitors. Transl Oncol. 2020;13(1):57–69. https://doi.org/10.1016/j.tranon.2019.10.001. Highlights the promise of targeting the more therapeutically accessible tumor microenvironment via small molecule inhibitors. This review summarizes recent advances in small-molecule inhibition of various tumor microenvironment components, including hypoxia, acidity, and immune signaling.

    Article  CAS  PubMed  Google Scholar 

  183. McCarty MF, Whitaker J. Manipulating tumor acidification as a cancer treatment strategy. Altern Med Rev. 2010;15(3):264–72.

    PubMed  Google Scholar 

  184. Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015;17(5):678–88. https://doi.org/10.1038/ncb3157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. • Liu L, Zhang SX, Liao W, Farhoodi HP, Wong CW, Chen CC, et al. Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Sci Transl Med. 2017;9(400). https://doi.org/10.1126/scitranslmed.aan2966. This study uses the increased local stiffness of tumors to target them using novel mechanosensitive cell therapeutics.

  186. Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 2017;171(6):1397-1410.e14. doi:https://doi.org/10.1016/j.cell.2017.10.008.

  187. Cao L, Zeller MK, Fiore VF, Strane P, Bermudez H, Barker TH. Phage-based molecular probes that discriminate force-induced structural states of fibronectin in vivo. Proc Natl Acad Sci U S A. 2012;109(19):7251–6. https://doi.org/10.1073/pnas.1118088109.

    Article  PubMed  PubMed Central  Google Scholar 

  188. McKeown SR. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br J Radiol. 2014;87(1035):20130676. https://doi.org/10.1259/bjr.20130676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11(6):393–410. https://doi.org/10.1038/nrc3064.

    Article  CAS  PubMed  Google Scholar 

  190. Papadopoulos KP, Goel S, Beeram M, Wong A, Desai K, Haigentz M, et al. A phase 1 open-label, accelerated dose-escalation study of the hypoxia-activated prodrug AQ4N in patients with advanced malignancies. Clin Cancer Res. 2008;14(21):7110–5. https://doi.org/10.1158/1078-0432.CCR-08-0483.

    Article  CAS  PubMed  Google Scholar 

  191. Cowen RL, Williams KJ, Chinje EC, Jaffar M, Sheppard FC, Telfer BA, et al. Hypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy: reversing tumor radioresistance and effecting cure. Cancer Res. 2004;64(4):1396–402. https://doi.org/10.1158/0008-5472.can-03-2698.

    Article  CAS  PubMed  Google Scholar 

  192. Meng F, Evans JW, Bhupathi D, Banica M, Lan L, Lorente G, et al. Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. Mol Cancer Ther. 2012;11(3):740–51. https://doi.org/10.1158/1535-7163.MCT-11-0634.

    Article  CAS  PubMed  Google Scholar 

  193. Huo D, Liu S, Zhang C, He J, Zhou Z, Zhang H, et al. Hypoxia-targeting, tumor microenvironment responsive nanocluster bomb for radical-enhanced radiotherapy. ACS Nano. 2017;11(10):10159–74. https://doi.org/10.1021/acsnano.7b04737.

    Article  CAS  PubMed  Google Scholar 

  194. Zhang Y, Dang M, Tian Y, Zhu Y, Liu W, Tian W, et al. Tumor acidic microenvironment targeted drug delivery based on pHLIP-modified mesoporous organosilica nanoparticles. ACS Appl Mater Interfaces. 2017;9(36):30543–52. https://doi.org/10.1021/acsami.7b10840.

    Article  CAS  PubMed  Google Scholar 

  195. Feng L, Dong Z, Tao D, Zhang Y, Liu Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci Rev. 2017;5(2):269–86. https://doi.org/10.1093/nsr/nwx062.

    Article  CAS  Google Scholar 

  196. Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet. 2009;41(11):1207–15. https://doi.org/10.1038/ng.463.

    Article  CAS  PubMed  Google Scholar 

  197. Lu R, Wang P, Parton T, Zhou Y, Chrysovergis K, Rockowitz S, et al. Epigenetic perturbations by Arg882-mutated DNMT3A potentiate aberrant stem cell gene-expression program and acute leukemia development. Cancer Cell. 2016;30(1):92–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Liu CC, Lin JH, Hsu TW, Su K, Li AFY, Hsu HS, et al. IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. Int J Cancer. 2015;136(3):547–59.

    CAS  PubMed  Google Scholar 

  199. Klarmann GJ, Decker A, Farrar WL. Epigenetic gene silencing in the Wnt pathway in breast cancer. Epigenetics. 2008;3(2):59–63.

    Article  PubMed  Google Scholar 

  200. Helou RE, Wicinski J, Guille A, Adelaide J, Finetti P, Bertucci F et al. A distinct DNA methylation signature defines breast cancer stem cells and predict cancer outcome. AACR; 2014.

  201. Suzuki H, Watkins DN, Jair K-W, Schuebel KE, Markowitz SD, Dong Chen W, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36(4):417–22. https://doi.org/10.1038/ng1330.

    Article  CAS  PubMed  Google Scholar 

  202. Yoda Y, Takeshima H, Niwa T, Kim JG, Ando T, Kushima R, et al. Integrated analysis of cancer-related pathways affected by genetic and epigenetic alterations in gastric cancer. Gastric Cancer. 2015;18(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  203. Versteege I, Sévenet N, Lange J, Rousseau-Merck M-F, Ambros P, Handgretinger R, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394(6689):203–6.

    Article  CAS  PubMed  Google Scholar 

  204. Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell. 2015;16(4):413–25.

    Article  CAS  PubMed  Google Scholar 

  205. Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe J-S, et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 2013;27(24):2648–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yu A, Rual J-F, Tamai K, Harada Y, Vidal M, He X, et al. Association of dishevelled with the clathrin AP-2 adaptor is required for frizzled endocytosis and planar cell polarity signaling. Dev Cell. 2007;12(1):129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rheinbay E, Suvà ML, Gillespie SM, Wakimoto H, Patel AP, Shahid M, et al. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep. 2013;3(5):1567–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chan KM, Han J, Fang D, Gan H, Zhang Z. A lesson learned from the H3. 3K27M mutation found in pediatric glioma: a new approach to the study of the function of histone modifications in vivo? Cell Cycle. 2013;12(16):2546–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ghoshal P, Nganga AJ, Moran-Giuati J, Szafranek A, Johnson TR, Bigelow AJ, et al. Loss of the SMRT/NCoR2 corepressor correlates with JAG2 overexpression in multiple myeloma. Cancer Res. 2009;69(10):4380–7.

    Article  CAS  PubMed  Google Scholar 

  211. Liu C, Liu L, Shan J, Shen J, Xu Y, Zhang Q, et al. Histone deacetylase 3 participates in self-renewal of liver cancer stem cells through histone modification. Cancer Lett. 2013;339(1):60–9.

    Article  CAS  PubMed  Google Scholar 

  212. Chen X, Sun K, Jiao S, Cai N, Zhao X, Zou H, et al. High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci Rep. 2014;4(1):1–12.

    Google Scholar 

  213. Yu F, Jiao Y, Zhu Y, Wang Y, Zhu J, Cui X, et al. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J Biol Chem. 2012;287(1):465–73.

    Article  CAS  PubMed  Google Scholar 

  214. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Khorrami S, Hosseini AZ, Mowla SJ, Ghanbari R. Differential microRNA expression profile of colon cancer stem cells derived from primary tumor and HT-29 cell line. Int J Cancer Manag. 2017;10(8).

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) National Institute of Allergy and Infectious Disease (NIAID) Grant R21AI128519-01 to W.F.L, NIH National Institute of Biomedical Imaging and Bioengineering (NIBIB) Grant R21EB027840-01 to T.L.D and W.F.L, and NIH New Innovator Award (DP2) Grant DP2CA250382-01, a National Science Foundation (NSF) grant (DMS1763272) and a grant from the Simons Foundation (594598 QN) to T.L.D. N.A. was supported by a T32 training grant from the NIH (T32HL116270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Downing.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cell Behavior Manipulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veerasubramanian, P.K., Trinh, A., Akhtar, N. et al. Biophysical and Epigenetic Regulation of Cancer Stemness, Invasiveness, and Immune Action. Curr. Tissue Microenviron. Rep. 1, 277–300 (2020). https://doi.org/10.1007/s43152-020-00021-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-020-00021-w

Keywords

Navigation