Skip to main content

Advertisement

Log in

Using Tools in Mechanobiology to Repair Tendons

  • Cell Behavior Manipulation (S Willerth, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to describe the mechanobiological mechanisms of tendon repair as well as outline current and emerging tools in mechanobiology that might be useful for improving tendon healing and regeneration. Over 30 million musculoskeletal injuries are reported in the US per year and nearly 50% involve soft tissue injuries to tendons and ligaments. Yet current therapeutic strategies for treating tendon injuries are not always successful in regenerating and returning function of the healing tendon.

Recent Findings

The use of rehabilitative strategies to control the motion and transmission of mechanical loads to repairing tendons following surgical reattachment is beneficial for some, but not all, tendon repairs. Scaffolds that are designed to recapitulate properties of developing tissues show potential to guide the mechanical and biological healing of tendon following rupture. The incorporation of biomaterials to control alignment and reintegration, as well as promote scar-less healing, are also promising. Improving our understanding of damage thresholds for resident cells and how these cells respond to bioelectrical cues may offer promising steps forward in the field of tendon regeneration.

Summary

The field of orthopedics continues to advance and improve with the development of regenerative approaches for musculoskeletal injuries, especially for tendon, and deeper exploration in this area will lead to improved clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg. 2008;33(1):102–12.

    Google Scholar 

  2. Leadbetter WB, Buckwalter JA, Gordon SL, Foundation for Sports Medicine Education and Research, American Orthopaedic Society for Sports Medicine, National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.), editors. Sports-induced inflammation: clinical and basic science concepts. Park Ridge: American Academy of Orthopaedic Surgeons; 1990. 799 p.

  3. Khan KM, Cook JL, Taunton JE, Bonar F. Overuse tendinosis, not tendinitis: part 1: a new paradigm for a difficult clinical problem. Phys Sportsmed. 2000;28(5):38–48.

    PubMed  CAS  Google Scholar 

  4. Alfredson H, Lorentzon R. Chronic Achilles tendinosis: recommendations for treatment and prevention. Sports Med. 2000;29(2):135–46.

    PubMed  CAS  Google Scholar 

  5. Aström M, Rausing A, Chronic Achilles tendinopathy. A survey of surgical and histopathologic findings. Clin Orthop Relat Res. 1995;316:151–64.

    Google Scholar 

  6. Wiseman SP, Nelson SJ, Tyagi V, Kovacevic D, Blaine TA. Current trends in orthobiologics and shoulder surgery. Curr Orthop Pract. 2017;28(2):135–41.

    Google Scholar 

  7. Albers S, Zwerver J, van den Akker-Scheek I. 7 incidence and prevalence of lower extremity tendinopathy in the general population: Abstract 7 Table 1. Br J Sports Med. 2014;48(Suppl 2):A5.1–A5.

    Google Scholar 

  8. Wertz J, Galli M, Borchers JR. Achilles tendon rupture: risk assessment for aerial and ground athletes. Sports Health. 2013 Sep;5(5):407–9.

    PubMed  PubMed Central  Google Scholar 

  9. Consigliere P, Polyzois I, Sarkhel T, Gupta R, Levy O, Narvani AA. Preliminary results of a consecutive series of large & massive rotator cuff tears treated with arthroscopic rotator cuff repairs augmented with extracellular matrix. Arch Bone Jt Surg. 2017;5(1):14–21.

    PubMed  PubMed Central  Google Scholar 

  10. Minhas SV, Kester BS, Larkin KE, Hsu WK. The effect of an orthopaedic surgical procedure in the National Basketball Association. Am J Sports Med. 2016;44(4):1056–61.

    PubMed  Google Scholar 

  11. Saxena A, Ewen B, Maffulli N. Rehabilitation of the operated Achilles tendon: parameters for predicting return to activity. J Foot Ankle Surg. 2011;50(1):37–40.

    PubMed  Google Scholar 

  12. Klouche S, Lefevre N, Herman S, Gerometta A, Bohu Y. Return to sport after rotator cuff tear repair: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1877–87.

    PubMed  Google Scholar 

  13. Huang AH, Riordan TJ, Pryce B, Weibel JL, Watson SS, Long F, et al. Musculoskeletal integration at the wrist underlies the modular development of limb tendons. Development. 2015;142(14):2431–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Lichtwark GA, Wilson AM. Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J Exp Biol. 2006;209(21):4379–88.

    PubMed  CAS  Google Scholar 

  15. Heinemeier KM, Schjerling P, Heinemeier J, Magnusson SP, Kjaer M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C. FASEB J. 2013;27(5):2074–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Soslowsky LJ, Thomopoulos S, Tun S, Flanagan CL, Keefer CC, Mastaw J, et al. J Shoulder Elb Surg. 2000;9(2):79–84.

    CAS  Google Scholar 

  17. Herod TW, Veres SP. Development of overuse tendinopathy: a new descriptive model for the initiation of tendon damage during cyclic loading. J Orthop Res. 2018;36(1):467–76.

    PubMed  CAS  Google Scholar 

  18. Sharma P, Maffulli N. The future: rehabilitation, gene therapy, optimization of healing. Foot Ankle Clin. 2005;10(2):383–97.

    PubMed  Google Scholar 

  19. • Freedman BR, Rodriguez AB, Leiphart RJ, Newton JB, Ban E, Sarver JJ, et al. Dynamic loading and tendon healing affect multiscale tendon properties and ECM stress transmission. Sci Rep. 2018;8(1):10854 This work highlights the multiscale response of tendon following dynamic loading and during healing using sophisticated imaging techniques and mechanical characterization. Findings from this work provides insight into how endogenous and/or therapeutic cells experience the tendon microenvironment.

    PubMed  PubMed Central  Google Scholar 

  20. Pingel J, Wienecke J, Kongsgaard M, Behzad H, Abraham T, Langberg H, et al. Increased mast cell numbers in a calcaneal tendon overuse model. Scand J Med Sci Sports. 2013 Dec;23(6):e353–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Komatsu I, Wang JH-C, Iwasaki K, Shimizu T, Okano T. The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomater. 2016;42:136–46.

    PubMed  CAS  Google Scholar 

  22. Thigpen CA, Shaffer MA, Gaunt BW, Leggin BG, Williams GR, Wilcox RB. The American Society of Shoulder and Elbow Therapists’ consensus statement on rehabilitation following arthroscopic rotator cuff repair. J Shoulder Elb Surg. 2016;25(4):521–35.

    Google Scholar 

  23. Hsu JE, Horneff JG, Gee AO. Immobilization after rotator cuff repair: what evidence do we have now? Orthop Clin North Am. 2016;47(1):169–77.

    PubMed  Google Scholar 

  24. Keener JD, Galatz LM, Stobbs-Cucchi G, Patton R, Yamaguchi K. Rehabilitation following arthroscopic rotator cuff repair: a prospective randomized trial of immobilization compared with early motion. J Bone Joint Surg Am. 2014;96(1):11–9.

    PubMed  Google Scholar 

  25. Nilsson-Helander K, Silbernagel KG, Thomeé R, Faxén E, Olsson N, Eriksson BI, et al. Acute achilles tendon rupture: a randomized, controlled study comparing surgical and nonsurgical treatments using validated outcome measures. Am J Sports Med. 2010;38(11):2186–93.

    PubMed  Google Scholar 

  26. Huang J, Wang C, Ma X, Wang X, Zhang C, Chen L. Rehabilitation regimen after surgical treatment of acute Achilles tendon ruptures: a systematic review with meta-analysis. Am J Sports Med. 2015;43(4):1008–16.

    PubMed  Google Scholar 

  27. Galatz LM, Charlton N, Das R, Kim HM, Havlioglu N, Thomopoulos S. Complete removal of load is detrimental to rotator cuff healing. J Shoulder Elb Surg. 2009;18(5):669–75.

    Google Scholar 

  28. Murrell GA, Lilly EG, Goldner RD, Seaber AV, Best TM. Effects of immobilization on Achilles tendon healing in a rat model. J Orthop Res. 1994;12(4):582–91.

    PubMed  CAS  Google Scholar 

  29. Hillin CD, Fryhofer GW, Freedman BR, Choi DS, Weiss SN, Huegel J, et al. Effects of immobilization angle on tendon healing after achilles rupture in a rat model. J Orthop Res. 2019;37(3):562–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Murrell GA, Lilly EG, Goldner RD, Seaber AV, Best TM. Effects of immobilization on Achilles tendon healing in a rat model. J Orthop Res. 1994;12(4):582–91.

    PubMed  CAS  Google Scholar 

  31. Amiel D, Akeson WH, Harwood FL, Frank CB. Stress deprivation effect on metabolic turnover of the medial collateral ligament collagen. A comparison between nine- and 12-week immobilization. Clin Orthop Relat Res. 1983;172:265–70.

    CAS  Google Scholar 

  32. Killian ML, Cavinatto L, Shah SA, Sato EJ, Ward SR, Havlioglu N, et al. The effects of chronic unloading and gap formation on tendon-to-bone healing in a rat model of massive rotator cuff tears. J Orthop Res. 2014;32(3):439–47.

    PubMed  Google Scholar 

  33. Birkisson I, Dahlin L, Rosberg H. Early mobilization compared with immobilization after repair of a flexor tendon injury in children: a retrospective long time follow-up. Hand Microsurg. 2017;6:130–5.

    Google Scholar 

  34. Wu F, Nerlich M, Docheva D. Tendon injuries: basic science and new repair proposals. EFORT Open Rev. 2017;2(7):332–42.

    PubMed  PubMed Central  Google Scholar 

  35. Soroceanu A, Sidhwa F, Aarabi S, Kaufman A, Glazebrook M. Surgical versus nonsurgical treatment of acute Achilles tendon rupture: a meta-analysis of randomized trials. J Bone Joint Surg Am. 2012;94(23):2136–43.

    PubMed  PubMed Central  Google Scholar 

  36. Ochen Y, Beks RB, van Heijl M, Hietbrink F, Leenen LPH, van der Velde D, et al. Operative treatment versus nonoperative treatment of Achilles tendon ruptures: systematic review and meta-analysis. BMJ. 2019;364:k5120.

    PubMed  PubMed Central  Google Scholar 

  37. Ratcliffe A, Butler DL, Dyment NA, Cagle PJ, Proctor CS, Ratcliffe SS, et al. Scaffolds for tendon and ligament repair and regeneration. Ann Biomed Eng. 2015;43(3):819–31.

    PubMed  PubMed Central  Google Scholar 

  38. Olsson N, Nilsson-Helander K, Karlsson J, Eriksson BI, Thomée R, Faxén E, et al. Major functional deficits persist 2 years after acute Achilles tendon rupture. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):1385–93.

    PubMed  Google Scholar 

  39. Tajik A, Zhang Y, Wei F, Sun J, Jia Q, Zhou W, et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater. 2016;15(12):1287–96.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Brickner JH, Walter P. Gene recruitment of the activated INO1 locus to the nuclear membrane. Tom Misteli, editor. PLoS Biol. 2004;2(11):e342.

    PubMed  PubMed Central  Google Scholar 

  41. Reddy KL, Zullo JM, Bertolino E, Singh H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature. 2008;452(7184):243–7.

    PubMed  CAS  Google Scholar 

  42. Kalson NS, Starborg T, Lu Y, Mironov A, Humphries SM, Holmes DF, et al. Nonmuscle myosin II powered transport of newly formed collagen fibrils at the plasma membrane. Proc Natl Acad Sci U S A. 2013;110(49):E4743–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Smith SM, Zhang G, Birk DE. Collagen V localizes to pericellular sites during tendon collagen fibrillogenesis. Matrix Biol. 2014;33:47–53.

    PubMed  CAS  Google Scholar 

  44. Canty EG, Starborg T, Lu Y, Humphries SM, Holmes DF, Meadows RS, et al. Actin filaments are required for fibripositor-mediated collagen fibril alignment in tendon. J Biol Chem. 2006;281(50):38592–8.

    PubMed  CAS  Google Scholar 

  45. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219–27.

    PubMed  CAS  Google Scholar 

  46. Harvey T, Flamenco S, Fan C-M. A Tppp3+Pdgfra+ tendon stem cell population contributes to regeneration and reveals a shared role for PDGF signalling in regeneration and fibrosis. Nat Cell Biol. 2019;21(12):1490–503.

    PubMed  CAS  Google Scholar 

  47. Mienaltowski MJ, Adams SM, Birk DE. Regional differences in stem cell/progenitor cell populations from the mouse Achilles tendon. Tissue Eng A. 2013;19(1–2):199–210.

    CAS  Google Scholar 

  48. Zhou Z, Akinbiyi T, Xu L, Ramcharan M, Leong DJ, Ros SJ, et al. Tendon-derived stem/progenitor cell aging: defective self-renewal and altered fate: tendon-derived stem/progenitor cell aging. Aging Cell. 2010;9(5):911–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Ackerman JE, Best KT, O’Keefe RJ, Loiselle AE. Deletion of EP4 in S100a4-lineage cells reduces scar tissue formation during early but not later stages of tendon healing. Sci Rep. 2017;7(1):8658.

    PubMed  PubMed Central  Google Scholar 

  50. Best KT, Loiselle AE. Scleraxis lineage cells contribute to organized bridging tissue during tendon healing and identify a subpopulation of resident tendon cells. FASEB J. 2019;33(7):8578–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Mikic B, Johnson TL, Chhabra AB, Schalet BJ, Wong M, Hunziker EB. Differential effects of embryonic immobilization on the development of fibrocartilaginous skeletal elements. J Rehabil Res Dev. 2000;37(2):127–33.

    PubMed  CAS  Google Scholar 

  52. Osborne AC, Lamb KJ, Lewthwaite JC, Dowthwaite GP, Pitsillides AA. Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints. J Musculoskelet Neuronal Interact. 2002;2(5):448–56.

    PubMed  CAS  Google Scholar 

  53. Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development (Cambridge, England). 2011;138(15):3247–59.

    CAS  Google Scholar 

  54. Zelzer E, Blitz E, Killian ML, Thomopoulos S. Tendon-to-bone attachment: from development to maturity. Birth defects research Part C. Embryo Today : reviews. 2014;102(1):101–12.

    CAS  Google Scholar 

  55. Edom-Vovard F, Duprez D. Signals regulating tendon formation during chick embryonic development. Developmental Dynamics: An Official Publication of the American Association of Anatomists. 2004;229(3):449–57.

    CAS  Google Scholar 

  56. Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development (Cambridge, England). 2015;142(24):4191–204.

    CAS  Google Scholar 

  57. Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports. 2000;10(6):312–20.

    PubMed  CAS  Google Scholar 

  58. Kannus P, Jozsa L, Järvinen TAH, Järvinen TLN, Kvist M, Natri A, et al. Location and distribution of non-collagenous matrix proteins in musculoskeletal tissues of rat. Histochem J. 1998;30(11):799–810.

    PubMed  CAS  Google Scholar 

  59. Birk DE, Zycband EI, Woodruff S, Winkelmann DA, Trelstad RL. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Dev Dyn: An Official Publication of the American Association of Anatomists. 1997;208(3):291–8.

    CAS  Google Scholar 

  60. Huang AH, Lu HH, Schweitzer R. Molecular regulation of tendon cell fate during development. J Orthop Res: Official Publication of the Orthopaedic Research Society. 2015;33(6):800–12.

    Google Scholar 

  61. Berthet E, Chen C, Butcher K, Schneider RA, Alliston T, Amirtharajah M. Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. J Orthop Res: Official Publication of the Orthopaedic Research Society. 2013;31(9):1475–83.

    CAS  Google Scholar 

  62. Ito Y, Toriuchi N, Yoshitaka T, Ueno-Kudoh H, Sato T, Yokoyama S, et al. The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci U S A. 2010;107(23):10538–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Killian ML, Thomopoulos S. Scleraxis is required for the development of a functional tendon enthesis. FASEB J: official publication of the Federation of American Societies for Experimental Biology. 2016;30(1):301–11.

    CAS  Google Scholar 

  64. Chen X, Yin Z, Chen J, Shen W, Liu H, Tang Q, et al. Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes. Sci Rep. 2012;2:977.

    PubMed  PubMed Central  Google Scholar 

  65. Provenzano PP, Vanderby R. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol: Journal of the International Society for Matrix Biology. 2006;25(2):71–84.

    CAS  Google Scholar 

  66. Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly Birth Defects Research Part C. Embryo Today: Reviews. 2008;84(3):228–44.

    CAS  Google Scholar 

  67. Marturano JE, Arena JD, Schiller ZA, Georgakoudi I, Kuo CK. Characterization of mechanical and biochemical properties of developing embryonic tendon. Proc Natl Acad Sci U S A. 2013;110(16):6370–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Humphries SM, Lu Y, Canty EG, Kadler KE. Active negative control of collagen fibrillogenesis in vivo intracellular cleavage of the type I procollagen propeptides in tendon fibroblasts without intracellular fibrils. J Biol Chem. 2008;283(18):12129–35.

    PubMed  CAS  Google Scholar 

  69. Wang WY, Davidson CD, Lin D, Baker BM. Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration. Nat Commun. 2019;10(1):1186.

    PubMed  PubMed Central  Google Scholar 

  70. •• Huang AH, Watson SS, Wang L, Baker BM, Akiyama H, Brigande JV, et al. Requirement for scleraxis in the recruitment of mesenchymal progenitors during embryonic tendon elongation. Development. 2019;146(20):dev182782 This paper used sophisticated lineage tracing approaches to identify the requirement of Scleraxis in the recruitment of mesenchymal progenitor cells during rapid elongation of tendon.

    PubMed  CAS  Google Scholar 

  71. Sakabe T, Sakai K, Maeda T, Sunaga A, Furuta N, Schweitzer R, et al. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice. J Biol Chem. 2018;293(16):5766–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  72. • Theodossiou SK, Tokle J, Schiele NR. TGFβ2-induced tenogenesis impacts cadherin and connexin cell-cell junction proteins in mesenchymal stem cells. Biochem Biophys Res Commun. 2019;508(3):889–93 This work characterized cell-cell junction proteins during tenogenic differentiation of mesenchymal stem cells. The authors identified temporal changes in N-cadherin, cadherin-11, and connexin-43 during tenogenesis induced by TGFβ2.

    PubMed  CAS  Google Scholar 

  73. Brown JP, Galassi TV, Stoppato M, Schiele NR, Kuo CK. Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors. Stem Cell Res Ther. 2015;6:89.

    PubMed  PubMed Central  Google Scholar 

  74. Henderson JH, Carter DR. Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures. Bone. 2002;31(6):645–53.

    PubMed  CAS  Google Scholar 

  75. Kalson NS, Holmes DF, Herchenhan A, Lu Y, Starborg T, Kadler KE. Slow stretching that mimics embryonic growth rate stimulates structural and mechanical development of tendon-like tissue in vitro. Dev Dyn. 2011;240(11):2520–8.

    PubMed  PubMed Central  Google Scholar 

  76. Moore MJ, De Beaux A. A quantitative ultrastructural study of rat tendon from birth to maturity. J Anat. 1987;153:163–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Parry DA, Barnes GR, Craig AS. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc London Series B Biol Sci. 1978;203(1152):305–21.

    CAS  Google Scholar 

  78. Jones GC, Corps AN, Pennington CJ, Clark IM, Edwards DR, Bradley MM, et al. Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon. Arthritis Rheum. 2006;54(3):832–42.

    PubMed  CAS  Google Scholar 

  79. Gotoh M, Mitsui Y, Shibata H, Yamada T, Shirachi I, Nakama K, et al. Increased matrix metalloprotease-3 gene expression in ruptured rotator cuff tendons is associated with postoperative tendon retear. Knee Surg Sports Traumatol Arthroscopy: official journal of the ESSKA. 2013;21(8):1807–12.

    Google Scholar 

  80. Holmes DF, Tait A, Hodson NW, Sherratt MJ, Kadler KE. Growth of collagen fibril seeds from embryonic tendon: fractured fibril ends nucleate new tip growth. J Mol Biol. 2010;399(1):9–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Horiguchi M, Ota M, Rifkin DB. Matrix control of transforming growth factor-β function. J Biochem. 2012;152(4):321–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Gumucio JP, Sugg KB, Mendias CL. TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise. Exerc Sport Sci Rev. 2015;43(2):93–9.

    PubMed  PubMed Central  Google Scholar 

  83. Mayer U, Saher G, Fässler R, Bornemann A, Echtermeyer F, von der Mark H, et al. Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet. 1997;17(3):318–23.

    PubMed  CAS  Google Scholar 

  84. Wang H-V, Chang L-W, Brixius K, Wickström SA, Montanez E, Thievessen I, et al. Integrin-linked kinase stabilizes myotendinous junctions and protects muscle from stress-induced damage. J Cell Biol. 2008;180(5):1037–49.

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Conti FJ, Felder A, Monkley S, Schwander M, Wood MR, Lieber R, et al. Progressive myopathy and defects in the maintenance of myotendinous junctions in mice that lack talin 1 in skeletal muscle. Development (Cambridge, England). 2008;135(11):2043–53.

    CAS  Google Scholar 

  86. McBride DJ, Trelstad RL, Silver FH. Structural and mechanical assessment of developing chick tendon. Int J Biol Macromol. 1988;10(4):194–200.

    CAS  Google Scholar 

  87. Maeda E, Shelton JC, Bader DL, Lee DA. Differential regulation of gene expression in isolated tendon fascicles exposed to cyclic tensile strain in vitro. J Appl Physiol (Bethesda, Md: 1985). 2009;106(2):506–12.

    CAS  Google Scholar 

  88. Archambault JM, Elfervig-Wall MK, Tsuzaki M, Herzog W, Banes AJ. Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients. J Biomech. 2002;35(3):303–9.

    PubMed  Google Scholar 

  89. Provenzano PP, Keely PJ. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci. 2011;124(Pt 8):1195–205.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Banes AJ, Horesovsky G, Larson C, Tsuzaki M, Judex S, Archambault J, et al. Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthr Cartil. 1999;7(1):141–53.

    PubMed  CAS  Google Scholar 

  91. Meier Bürgisser G, Evrova O, Calcagni M, Scalera C, Giovanoli P, Buschmann J. Impact of PDGF-BB on cellular distribution and extracellular matrix in the healing rabbit Achilles tendon three weeks post-operation. FEBS Open Bio. 2019;

  92. Turlo AJ, Mueller-Breckenridge AJ, Zamboulis DE, Tew SR, Canty-Laird EG, Clegg PD. Insulin-like growth factor binding protein (IGFBP6) is a cross-species tendon marker. Eur Cell Mater. 2019;38:123–36.

    PubMed  CAS  Google Scholar 

  93. Baker AR, McCarron JA, Tan CD, Iannotti JP, Derwin KA. Does augmentation with a reinforced fascia patch improve rotator cuff repair outcomes? CORR. 2012;470(9):2513–21.

    Google Scholar 

  94. Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. JBJS Am. 2006;88(12):2665–72.

    PubMed  Google Scholar 

  95. Derwin KA, Baker AR, Codsi MJ, Iannotti JP. Assessment of the canine model of rotator cuff injury and repair. J Shoulder Elb Surg. 2007;16(5 Suppl):S140–8.

    Google Scholar 

  96. Hortensius RA, Ebens JH, Dewey MJ, Harley BAC. Incorporation of the amniotic membrane as an immunomodulatory design element in collagen scaffolds for tendon repair. ACS Biomater Sci Eng. 2018;4(12):4367–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Grier WK, Sun Han Chang RA, Ramsey MD, Harley BAC. The influence of cyclic tensile strain on multi-compartment collagen-GAG scaffolds for tendon-bone junction repair. Connect Tissue Res. 2019;60(6):530–43.

    PubMed  CAS  Google Scholar 

  98. Echave MC, Domingues RMA, Gómez-Florit M, Pedraz JL, Reis RL, Orive G, et al. Biphasic hydrogels integrating mineralized and anisotropic features for interfacial tissue engineering. ACS Appl Mater Interfaces. 2019;11(51):47771–84.

    PubMed  CAS  Google Scholar 

  99. Font Tellado S, Chiera S, Bonani W, Poh PSP, Migliaresi C, Motta A, et al. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Acta Biomater. 2018;72:150–66.

    PubMed  CAS  Google Scholar 

  100. Freedman BR, Mooney DJ. Biomaterials to mimic and heal connective tissues. Adv Mater. 2019;31(19):1806695.

    Google Scholar 

  101. Gniesmer S, Brehm R, Hoffmann A, de Cassan D, Menzel H, Hoheisel AL, et al. Vascularization and biocompatibility of poly(ε-caprolactone) fiber mats for rotator cuff tear repair. Zhao F, editor. PLoS One. 2020;15(1):e0227563.

    PubMed  PubMed Central  Google Scholar 

  102. Liu W, Feng Z, Ou-Yang W, Pan X, Wang X, Huang P, et al. 3D printing of implantable elastic PLCL copolymer scaffolds. Soft Matter. 2020. https://doi.org/10.1039/C9SM02396H.

  103. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010;9(6):518–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    PubMed  CAS  Google Scholar 

  105. Youngstrom DW, LaDow JE, Barrett JG. Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor. Connect Tissue Res. 2016;57(6):454–65.

    PubMed  CAS  Google Scholar 

  106. Schiele NR, Koppes RA, Chrisey DB, Corr DT. Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly. Tissue Eng Part A. 2013;19(9–10):1223–32.

    PubMed  CAS  Google Scholar 

  107. Mubyana K, Corr DT. Cyclic uniaxial tensile strain enhances the mechanical properties of engineered, scaffold-free tendon fibers. Tissue Eng Part A 2018 .

  108. Doroski DM, Levenston ME, Temenoff JS. Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels. Tissue Eng Part A. 2010;16(11):3457–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Larkin LM, Calve S, Kostrominova TY, Arruda EM. Structure and functional evaluation of tendon-skeletal muscle constructs engineered in vitro. Tissue Eng. 2006;12(11):3149–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Paxton JZ, Hagerty P, Andrick JJ, Baar K. Optimizing an intermittent stretch paradigm using ERK1/2 phosphorylation results in increased collagen synthesis in engineered ligaments. Tissue Eng Part A. 2012;18(3–4):277–84.

    PubMed  CAS  Google Scholar 

  111. Wall ME, Banes AJ. Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. JMNI. 2005;5(1):70–84.

    PubMed  CAS  Google Scholar 

  112. •• Yu K, Sellman DP, Bahraini A, Hagan ML, Elsherbini A, Vanpelt KT, et al. Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone. J Orthop Res. 2018;36(2):653–62 This work highlights a new mechanism of the mechanical responsiveness of osteocytes (the resident cells of bone). Using both in vitro and in vivo experiments, the authors show that osteocytes are capable of detecting damage via plasma membrane disruptions, and propose that control of membrane damage using pharmacological methods could be used to modify skeletal adaptation.

    PubMed  CAS  Google Scholar 

  113. Grembowicz KP, Sprague D, McNeil PL. Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress. Mol Biol Cell. 1999;10(4):1247–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Howard AC, McNeil AK, McNeil PL. Promotion of plasma membrane repair by vitamin E. Nat Commun. 2011;2(1):597.

    PubMed  PubMed Central  Google Scholar 

  115. Mellgren RL, Huang X. Fetuin A stabilizes m-Calpain and facilitates plasma membrane repair. J Biol Chem. 2007;282(49):35868–77.

    PubMed  CAS  Google Scholar 

  116. Isaac DI, Golenberg N, Haut RC. Acute repair of chondrocytes in the rabbit tibiofemoral joint following blunt impact using P188 surfactant and a preliminary investigation of its long-term efficacy. J Orthop Res. 2009;n/a-n/a.

  117. Merchant FA, Holmes WH, Capelli-Schellpfeffer M, Lee RC, Toner M. Poloxamer 188 enhances functional recovery of lethally heat-shocked fibroblasts. J Surg Res. 1998;74(2):131–40.

    PubMed  CAS  Google Scholar 

  118. Gilchrist CL, Leddy HA, Kaye L, Case ND, Rothenberg KE, Little D, et al. TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension. Proc Natl Acad Sci U S A. 2019;116(6):1992–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Magra M, Hughes S, El Haj AJ, Maffulli N. VOCCs and TREK-1 ion channel expression in human tenocytes. Am J Phys Cell Phys. 2007;292(3):C1053–60.

    CAS  Google Scholar 

  120. Hennessey JA, Wei EQ, Pitt GS. Fibroblast growth factor homologous factors modulate cardiac calcium channels. Circ Res. 2013;113(4):381–8.

    PubMed  CAS  Google Scholar 

Download references

Funding

Research was financially supported by the University of Delaware Research Foundation; the Delaware Space Grant Consortium (NNX15AI19H), the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under Award Numbers R03HD094594 and K12HD073945, and the National Institute for General Medical Sciences under Award Number P30GM103333.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived, drafted, and edited the manuscript.

Corresponding author

Correspondence to Megan L. Killian.

Ethics declarations

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cell Behavior Manipulation

Connor C. Leek, Jaclyn M. Soulas, and Anna Lia Sullivan shared first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leek, C.C., Soulas, J.M., Sullivan, A.L. et al. Using Tools in Mechanobiology to Repair Tendons. Curr. Tissue Microenviron. Rep. 1, 31–40 (2020). https://doi.org/10.1007/s43152-020-00005-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-020-00005-w

Keywords

Navigation