1 Introduction and background

Let E be a complex Hilbert space and consider its open unit ball \(B_E\). The space of Bloch functions f on \(B_E\) will be denoted by \(\mathcal {B}(B_E)\). We will study various properties of automorphisms of the unit ball \(B_E\) which will allow us to supply conditions for a composition operator to be bounded below on \(\mathcal {B}(B_E)\), extending the one-dimensional results given [4]. The study of operators on Bloch spaces on an infinite dimensional setting can be found in [3], where the boundness and compactness of composition operators are studied. Hamada also deals with bounded below composition operators on the space of Bloch functions on bounded symmetric domains [10]. The author also studies properties of extended Cesàro operators on spaces of Bloch-type functions in [9]. The results given in this work are presented as a preprint in [13].

For our purpose, it will be needed that for any \(f \in \mathcal {B}(B_E)\), the map on \(x \in B_E\) given by \(x \mapsto (1-\Vert x\Vert ^2) \mathcal {R}f(x)\) is Lipschitz with respect to \(\rho _E\), where \(\rho _E\) denotes the pseudohyperbolic distance (see [13]) and bearing in mind that Rf is the radial derivative of the function f.

1.1 Automorphisms on \(B_E\). The pseudohyperbolic distance

If X is a complex Banach space and we denote by \(B_X\) its open unit ball, the function \(f: B_X \rightarrow \mathbb {C}\) is said to be analytic (or holomorphic) if f is Fréchet differentiable for all \(x \in B_X\) (see [15] for further information). The pseudohyperbolic distance \(\rho _X(x,y)\) for \(x,y \in B_X\) is described by:

$$\begin{aligned} \rho _X (x,y)=\sup \{ \rho (f(x),f(y)): f \in H^{\infty }(B_X), \ |f| < 1 \text{ on } \mathbb {D}\} \end{aligned}$$

where we denote by \(H^{\infty }(B_X)\) the space of analytic functions on \(B_X\) which are bounded. This space is endowed with the sup-norm and the pseudohyperbolic distance on \(\mathbb {D}\) is given by:

$$\begin{aligned} \rho (z,w)=\left| \frac{z-w}{1-\bar{z}w} \right| \ \ \text{ for } \text{ all } z,w \in \mathbb {D}. \end{aligned}$$

Now consider a complex Hilbert space E and denote by \(\langle \cdot , \cdot \rangle \) the natural inner product of E. We will denote by \({\text {Aut}}(B_E)\) the space of automorphisms of \(B_E\), that is, the bijective maps \(\varphi : B_E \rightarrow B_E\) which are bianalytic. We will use these automorphisms several times in this work (see [8] for further information). For every \(x \in B_E\), we will denote the automorphism \(\varphi _x: B_{E} \longrightarrow B_{E}\) by:

$$\begin{aligned} \varphi _{x}(y)= (s_x Q_x+P_x)(m_x(y)) \end{aligned}$$
(1.1)

where \(s_x=\sqrt{1-\Vert x\Vert ^2},\) \(m_x: B_{E} \longrightarrow B_{E}\) is the analytic self-map:

$$\begin{aligned} m_x(y)=\frac{x-y}{1- \langle y,x \rangle }, \end{aligned}$$

\(P_x: E \longrightarrow E\) is given by:

$$\begin{aligned} P_x(y)=\frac{\langle y, x \rangle }{\langle x,x \rangle } x \end{aligned}$$

and \(Q_x: E \longrightarrow E\) is defined by \(Q_x=Id_E-P_x\), where \(Id_E\) is the identity on E. Notice that \(\varphi _x(0)=x\) and also \(\varphi _x(x)=0\). It is well-known that the space of automorphisms of \(B_{E}\) is given by compositions of \(\varphi _x\) for some \(x \in B_E\) with unitary transformations U of E. In addition, this space acts transitively on \(B_E\).

The pseudohyperbolic distance on \(B_E\) is given by (see [8]):

$$\begin{aligned} \rho _{E}(x,y) = \Vert \varphi _{y}(x)\Vert \text{ for } \text{ any } x, y \in B_{E}. \end{aligned}$$
(1.2)

and using the definition of \(\varphi _x\) it is easy to conclude that:

$$\begin{aligned} \rho _E(x,y)^2=1-\frac{(1-\Vert x\Vert ^2)(1-\Vert y\Vert ^2)}{|1-\langle x,y \rangle |^2}. \end{aligned}$$
(1.3)

1.2 The space of Bloch functions

Let \(\mathbb {C}\) be the space of complex numbers and \(\mathbb {D}\) the open disk of radius 1 centered at 0. The classical Bloch space \(\mathcal {B}\) is given by the set of holomorphic functions \(f: \mathbb {D}\rightarrow \mathbb {C}\) such that \(\Vert f\Vert _B=\sup _{z \in \mathbb {D}} (1-|z|^2)|f'(z)| < +\infty \). Timoney extended this space by considering domains of finite dimensional Hilbert spaces (see [17]) and in [2] the authors extended these functions to an infinite dimensional context. When we deal with a complex Hilbert space E, the holomorphic function \(f: B_E \rightarrow \mathbb {C}\) belongs to the Bloch space \(\mathcal {B}(B_E)\) if:

$$\begin{aligned} \Vert f\Vert _\mathcal {B}=\sup _{x \in B_E} (1-\Vert x\Vert ^2) \Vert \nabla f(x)\Vert < +\infty , \end{aligned}$$

where the gradient \(\nabla f(x)\) denotes the Fréchet derivative \(f'(x)\) of f at x or, equivalently, if:

$$\begin{aligned} \Vert f\Vert _\mathcal {R}=\sup _{x \in B_E} (1-\Vert x\Vert ^2) \Vert \mathcal {R}f(x)\Vert < +\infty , \end{aligned}$$

where \(\mathcal {R}f(x)=\langle x, \overline{\nabla f (x)}\rangle \). Both semi-norms are also equivalent to:

$$\begin{aligned} \Vert f\Vert _\mathcal {I}=\sup _{x \in B_E} \Vert \widetilde{\nabla } f (x) \Vert , \end{aligned}$$
(1.4)

where \(\widetilde{\nabla } f (x)\) is the invariant gradient of f at x, that is, \(\widetilde{\nabla } f (x) =\nabla (f \circ \varphi _x)(0)\) and bearing in mind that \(\varphi _x\) is the automorphism described in (1.1).

These three semi-norms describe norms of Banach spaces which are equivalent-modulo constant functions- in \(\mathcal {B}(B_E)\) [2]. Indeed, there is a positive constant \(A_0\) satisfying:

$$\begin{aligned} \Vert f\Vert _\mathcal {R}\le \Vert f\Vert _\mathcal {B}\le \Vert f\Vert _\mathcal {I}\le A_0 \Vert f\Vert _R, \end{aligned}$$
(1.5)

so we obtain a Banach space if we endow \(\mathcal {B}(B_E)\) with one of the norms \(\Vert \cdot \Vert _{\mathcal {B}-{\text {Bloch}}}=|f(0)|+ \Vert \cdot \Vert _\mathcal {B}\) or \(\Vert \cdot \Vert _{\mathcal {R}-{\text {Bloch}}}\) and \(\Vert \cdot \Vert _{\mathcal {I}-{\text {Bloch}}}\) which are defined with the corresponding semi-norms \(\Vert \cdot \Vert _{\mathcal {R}}\) and \(\Vert \cdot \Vert _{\mathcal {I}}\). These semi-norms will be used along our work.

1.3 The function \((1-\Vert x\Vert ^2) |\mathcal {R}f(x)|\) is Lipschitz continuous

Let \(f \in \mathcal {B}(B_E)\). Recall that the function defined on \(x \in B_E\) and given by \(x \mapsto (1-\Vert x\Vert ^2) |\mathcal {R}f(x)|\) is Lipschitz with respect to \(\rho _E\). We recall several results which can be found in [13].

Theorem 1.1

If f belongs to \(\mathcal {B}(B_E)\) then:

$$\begin{aligned} |(1-\Vert x\Vert ^2) \mathcal {R}f(x)-(1-\Vert y\Vert ^2) \mathcal {R}f(y)| \le 14 \Vert f\Vert _\mathcal {I}\rho _E(x,y) \ \text{ for } \text{ all } x,y \in B_E. \end{aligned}$$

As a consequence, we obtain a corollary which extends results given in [1] by Attele and improved in [18] by Xiong on the Bloch space \(\mathcal {B}\):

Corollary 1.2

Consider a complex Hilbert space E. The function defined for \(x \in B_E\) and given by \(x \mapsto (1-\Vert x\Vert ^2) |\mathcal {R}f(x)|\) is Lipschitz with respect to the pseudohyperbolic distance \(\rho _E\). In addition, we have:

$$\begin{aligned} |(1-\Vert x\Vert ^2) |\mathcal {R}f(x)|-(1-\Vert y\Vert ^2) |\mathcal {R}f(y)| | \le 14 \Vert f\Vert _\mathcal {I}\rho _E(x,y). \end{aligned}$$

This will allow us to provide conditions for a composition operator on the Bloch space \(\mathcal {B}(B_E)\) to be bounded below.

2 Composition operators on \(\mathcal {B}(B_E)\) which are bounded below

Let X and Y be Banach spaces. A linear operator \(T: X \rightarrow Y\) is said to be bounded below if there is a positive constant \(k >0\) satisfying \(\Vert x\Vert \le k \Vert T(x)\Vert \). A linear continuous operator T is bounded below if and only if T has closed range and it is injective.

If \(\varphi : \mathbb {D}\rightarrow \mathbb {D}\) denotes an analytic map, the composition operator \(C_{\varphi }: \mathcal {B}\rightarrow \mathcal {B}\) is defined by \(C_{\varphi }(f)=f \circ \varphi \) and it is continuous for any \(\varphi \). Define:

$$\begin{aligned} \tau _{\varphi }(z)=\frac{1-|z|^2}{1-|\varphi (z)|^2} \varphi '(z). \end{aligned}$$
(2.1)

In [7], it was investigated when \(\varphi \) induces a composition operator which has closed range on \(\mathcal {B}\). They proved:

Proposition 2.1

Let \(C_{\varphi }\) be bounded below. Then there are \(\varepsilon , r >0\) such that \(r < 1\) satisfying that for all \(z \in \mathbb {D}\) we have \(\rho (\varphi (w),z) \le r\) for all \(w \in \mathbb {D}\) satisfying \(|\tau _{\varphi }(w)| > \varepsilon \).

The authors also studied the map defined for \(z \in \mathbb {D}\) by \(z \mapsto (1-|z|^2)|f'(z)|\), proving that it is Lipschitz with respect to \(\rho \) if f belongs to the Bloch space \(\mathcal {B}\). Indeed, for any \(f \in \mathcal {B}\) and \(z,w \in \mathbb {D}\) we have:

$$\begin{aligned} |(1-|z|^2)|f'(z)|-(1-|w|^2)|f'(w)|| \le 3.31 \Vert f\Vert _\mathcal {B}\rho (z,w). \end{aligned}$$
(2.2)

This result refines a result of Attele (see [1]) who provided the constant 9 instead of 3.31. Xiong improved the constant in [18], giving \(3 \sqrt{3}/2 \approx 2.6\). From (2.2) we have the following sufficient condition for \(C_{\varphi }\) to be bounded below (see [7]):

Theorem 2.2

Consider an analytic self-map \(\varphi \) on \(\mathbb {D}\) and suppose that there is \(0< r < \frac{1}{4}\) and \(\varepsilon >0\) satisfying that for any \(w \in \mathbb {D}\) there exists \(z_w \in \mathbb {D}\) such that \(\rho (\varphi (z_w),w) < r\) and \(|\tau _{\varphi }(z_w)| > \varepsilon \). Then the operator \(C_\varphi : \mathcal {B}\rightarrow \mathcal {B}\) is bounded below.

F. Deng, L. Jiang and C. Ouyang [6] and H. Chen [4] considered self-maps \(\varphi \) on \(B_n\), where \(B_n\) denotes the open unit ball of a finite dimensional Hilbert space, extending these results from the one-dimensional case. However, they replaced \(\tau _\varphi (z)\) by:

$$\begin{aligned} \left( \frac{1-\Vert z\Vert ^2}{1-\Vert \varphi (z)\Vert ^2}\right) ^{(n+1)/2} |det(J_{\varphi }(z))| \end{aligned}$$
(2.3)

where \(J_{\varphi }(z)\) is the Jacobian matrix of \(\varphi \). If \(\varphi \) is an automorphism of \(B_n\) then it is easy that \(\tau _\varphi (z)=1\). Moreover, the proofs of these results used the definition given by Timoney of Bloch function on \(B_n\) depending on the Bergman metric [17].

To extend the results given for the classical Bloch space \(\mathcal {B}\) to a more general setting (finite or infinite dimensional), we will give sufficient and necessary conditions which avoid the Bergman metric and expression (2.3). Hence, consider a complex Hilbert space E and an analytic map \(\psi : B_E \rightarrow B_E\). We define for \(x \in B_E\) the expressions \(\tau _\psi (x)\) and \(\widetilde{\tau _\psi }(x)\) which are given by:

$$\begin{aligned} {\tau _\psi }(x) =\frac{1-\Vert x\Vert ^2}{1-\Vert \psi (x)\Vert ^2} \Vert \psi '(x)\Vert \end{aligned}$$
(2.4)

and:

$$\begin{aligned} \widetilde{\tau _\psi }(x)=\frac{\sqrt{1-\Vert x\Vert ^2}}{1-\Vert \psi (x)\Vert ^2} \Vert \psi '(x)\Vert . \end{aligned}$$
(2.5)

It is easy that \(\widetilde{\tau _\psi }(x) \ge {\tau _\psi }(x)\).

In [3] the authors studied the boundness and also the compactness of \(C_{\psi }: \mathcal {B}(B_E) \rightarrow \mathcal {B}(B_E)\) which is the composition operator defined by \(C_{\psi }(f)=f \circ \psi \). It was proved that for any analytic self map \(\psi \) on \(B_E\), the operator \(C_{\psi }\) is bounded. Furthermore, they proved the inequality \(\Vert f \circ \psi \Vert _\mathcal {I}\le \Vert f\Vert _\mathcal {I}\) where \(\Vert \cdot \Vert _\mathcal {I}\) is the semi-norm defined in Sect. 1.2.

This Lemma will be useful for Lemma 2.4:

Lemma 2.3

Consider a complex Hilbert space E and \(f \in \mathcal {B}(B_E)\). Then:

$$\begin{aligned} |f(x)-f(0)| \le \Vert x\Vert \frac{\Vert f\Vert _\mathcal {B}}{1-\Vert x\Vert ^2} \ \ \text{ for } \text{ any } x \in B_E. \end{aligned}$$

Proof

Note that:

$$\begin{aligned} |f(x)-f(0)|= & {} \left| \left( \int _{0}^{1} f'(xt) {\text {d}}t \right) (x) \right| \le \Vert x\Vert \left\| \int _{0}^{1} \frac{f'(xt) (1-\Vert tx\Vert ^2)}{1-\Vert tx\Vert ^2} {\text {d}}t \right\| \\\le & {} \Vert x\Vert \Vert f\Vert _\mathcal {B}\int _{0}^{1} \left| \frac{1}{1-\Vert tx\Vert ^2} \right| {\text {d}}t \\\le & {} \Vert x\Vert \Vert f\Vert _\mathcal {B}\int _{0}^{1} \frac{1}{1-\Vert x\Vert ^2} {\text {d}}t = \Vert x\Vert \frac{\Vert f\Vert _\mathcal {B}}{1-\Vert x\Vert ^2} \end{aligned}$$

so the result is clear. \(\square \)

Recall that \(\Vert \cdot \Vert _\mathcal {R}\), \(\Vert \cdot \Vert _\mathcal {I}\) and \(\Vert \cdot \Vert _\mathcal {B}\) are equivalent, so they can be used interchangeably when studying if \(C_\psi \) is bounded below.

The following Lemma was given in [10, Lemma 2.14] with a different proof for the general case when \(B_E\) is the unit ball of a \(JB^*\)-triple. For completeness, we give a direct proof:

Lemma 2.4

Consider a complex Hilbert space E and an analytic map \(\psi : B_E \rightarrow B_E\). The composition operator \(C_{\psi }: \mathcal {B}(B_E) \rightarrow \mathcal {B}(B_E)\) is bounded below if and only if there is \(k >0\) such that:

$$\begin{aligned} \Vert C_\psi (f)\Vert _\mathcal {I}\ge k \Vert f\Vert _\mathcal {I}\ \text{ for } \text{ all } f \in \mathcal {B}(B_E). \end{aligned}$$

Proof

If \(C_{\psi }\) is bounded below then there exists \(k >0\) such that \(\Vert C_{\psi }(f)\Vert _{\mathcal {I}-{\text {Bloch}}} \ge k \Vert f\Vert _{\mathcal {I}-{\text {Bloch}}}\) for \(f \in \mathcal {B}(B_E)\). We define \(g(x)=f(x)-f(\psi (0))\) and clearly \(g(\psi (0))=0\). We have:

$$\begin{aligned} \Vert C_{\psi }(f)\Vert _{\mathcal {I}}= & {} \Vert f \circ \psi \Vert _\mathcal {I}= \Vert g \circ \psi \Vert _\mathcal {I}= \Vert g \circ \psi \Vert _{\mathcal {I}-{\text {Bloch}}} \\\ge & {} k \Vert g\Vert _{\mathcal {I}-{\text {Bloch}}} \ge k \Vert g\Vert _\mathcal {I}=k \Vert f\Vert _\mathcal {I}. \end{aligned}$$

Now consider \(\Vert C_\psi (f)\Vert _\mathcal {I}\ge k \Vert f\Vert _\mathcal {I}\) for some constant \(0 < k \le 1\). We will find \(k' >0\) satisfying \(\Vert C_\psi (f)\Vert _{\mathcal {I}-{\text {Bloch}}} \ge k' \Vert f\Vert _{\mathcal {I}-{\text {Bloch}}}.\) Using Lemma 2.3 we obtain:

$$\begin{aligned} |f(\psi (0))-f(0)| \le \Vert \psi (0)\Vert \frac{\Vert f\Vert _\mathcal {B}}{1-\Vert \psi (0)\Vert ^2} \end{aligned}$$

so we have:

$$\begin{aligned} |f(\psi (0))| \ge |f(0)|-\Vert \psi (0)\Vert \frac{\Vert f\Vert _\mathcal {B}}{1-\Vert \psi (0)\Vert ^2} \ge |f(0)|-\frac{\Vert f\Vert _\mathcal {I}}{1-\Vert \psi (0)\Vert ^2}. \end{aligned}$$

and we obtain:

$$\begin{aligned} |f(\psi (0))|+\frac{1}{(1-\Vert \psi (0)\Vert ^2)} \Vert f\Vert _\mathcal {I}\ge |f(0)|. \end{aligned}$$

Hence:

$$\begin{aligned}{} & {} k(1-\Vert \psi (0)\Vert ^2)|f(\psi (0))|+\Vert C_{\psi }(f)\Vert _\mathcal {I}\\{} & {} \quad \ge k(1-\Vert \psi (0)\Vert ^2) |f(\psi (0))|+k \Vert f\Vert _\mathcal {I}\ge k (1-\Vert \psi (0)\Vert ^2) |f(0)| \end{aligned}$$

so we have that:

$$\begin{aligned} 2(|f(\psi (0))|+\Vert C_\psi (f)\Vert _\mathcal {I})= & {} 2|f(\psi (0))| + \Vert C_\psi (f)\Vert _\mathcal {I}+\Vert C_\psi (f)\Vert _\mathcal {I}\\\ge & {} k(1-\Vert \psi (0)\Vert ^2)|f(\psi (0))|+ \Vert C_\psi (f)\Vert _\mathcal {I}+\Vert C_\psi (f)\Vert _\mathcal {I}\\\ge & {} k(1-\Vert \psi (0)\Vert ^2)|f(0)|+\Vert C_\psi (f)\Vert _\mathcal {I}\\\ge & {} k(1-\Vert \psi (0)\Vert ^2)(|f(0)|+\Vert f\Vert _\mathcal {I}) \end{aligned}$$

and we can conclude:

$$\begin{aligned} \Vert C_\psi (f))\Vert _{\mathcal {I}-{\text {Bloch}}} \ge \frac{k(1-\Vert \psi (0)\Vert ^2)}{2} \Vert f\Vert _{\mathcal {I}-{\text {Bloch}}} \end{aligned}$$

so taking \(k'=k(1-\Vert \psi (0)\Vert ^2)/2\) we obtain that \(C_\psi \) is a bounded below operator. \(\square \)

2.1 The automorphisms \(\varphi _x\) on \(B_E\)

In this section we will give some calculations related to the automorphisms \(\varphi _x\) of \(B_E\) given in (1.1) which will permit us to study conditions for \(C_\varphi \) to be bounded below. If E is finite dimensional, then it is well-known that \(\varphi _x\) is an involution (see [16]). Since the proof uses the Cartan’s uniqueness theorem, we first give a new proof of this assertion, extending the result for infinite dimensional spaces:

Lemma 2.5

If E is a complex Hilbert space and \(x \in B_E\), then \(\varphi _x \circ \varphi _x=Id_E\), that is, \(\varphi _x\) is an involution.

Proof

Using (1.1), we have:

$$\begin{aligned} \varphi _x(\varphi _x(y))=(s_x Q_x+P_x)(m_x(\varphi _x(y))= (s_x Q_x+P_x) \left( \frac{x-\varphi _x(y)}{1-\langle \varphi _x(y),x \rangle }\right) \end{aligned}$$

and using the following result (it can be found as Lemma 3.6 in [14]):

$$\begin{aligned} 1-\langle \varphi _x(y),x\rangle =1-\langle \varphi _x(y),\varphi _x(0)\rangle =\frac{1-\Vert x\Vert ^2}{1-\langle y,x \rangle } \end{aligned}$$

we obtain:

$$\begin{aligned} \varphi _x(\varphi _x(y))= & {} \frac{1-\langle y,x \rangle }{1-\Vert x\Vert ^2} (s_x Q_x+P_x) \left( x-\varphi _x(y)\right) \\= & {} \frac{1-\langle y,x \rangle }{1-\Vert x\Vert ^2} \left( (s_x Q_x+P_x)(x)-(s_x Q_x +P_x)((s_x Q_x+P_x)(m_x(y)))\right) . \end{aligned}$$

Using \(P_x \circ Q_x=Q_x \circ P_x=0\), \(P_x+Q_x=Id_E\), \(P_x^2=P_x\) and \(Q_x^2=Q_x\) we have:

$$\begin{aligned} \varphi _x(\varphi _x(y))= & {} \frac{1-\langle y,x \rangle }{1-\Vert x\Vert ^2} \left( x-(s_x^2 Q_x +P_x)\left( \frac{x-y}{1-\langle y,x \rangle } \right) \right) \\= & {} \frac{1-\langle y,x \rangle }{(1-\Vert x\Vert ^2)(1-\langle y,x \rangle )} \left( (1-\langle y,x \rangle ) x-(s_x^2 Q_x +P_x)\left( x-y \right) \right) \\= & {} \frac{1}{(1-\Vert x\Vert ^2)} \left( (x-\Vert x\Vert ^2 P_x(y)-x+(1-\Vert x\Vert ^2) Q_x(y)+P_x(y)\right) \\= & {} \frac{1}{(1-\Vert x\Vert ^2)}(1-\Vert x\Vert ^2)(P_x(y)+Q_x(y))=y \end{aligned}$$

so we obtain the result. \(\square \)

Lemma 2.6

For any \(x \in B_E\) we have that the operator \(\varphi _x'(0)\) is invertible and \(\varphi _x'(0)^{-1}=\varphi _x'(x)\).

Proof

Using Lemma 2.5, we have \((\varphi _x \circ \varphi _x)'(0)=Id_E'(0)=Id_E\) so:

$$\begin{aligned} \varphi _x'(\varphi _x(0)) \circ \varphi _x'(0)=\varphi _x'(x) \circ \varphi _x'(0)=Id_E \end{aligned}$$

and we are done. \(\square \)

Recall that \(\Vert f\Vert _\mathcal {I}=\sup _{x \in B_E} \Vert \widetilde{\nabla } f(x) \Vert \) by (1.4). For all \(x \in B_E\) we have:

$$\begin{aligned} \Vert \widetilde{\nabla } f(x) \Vert = \sup _{u \in \overline{B_E}} \Vert f'(\varphi _x(0)) \circ \varphi _x'(0)(u)\Vert =\sup _{w \in E {\setminus } \{0\}} \frac{| f'(x)(w)|}{\Vert \varphi _x'(0)^{-1}(w)\Vert } \end{aligned}$$
(2.6)

and for all \(w \in E\) we have that (see [2]):

$$\begin{aligned} \Vert \varphi _x'(0)^{-1}(w)\Vert ^2=\frac{(1-\Vert x\Vert ^2) \Vert w\Vert ^2+| \langle w,x \rangle |^2}{(1-\Vert x\Vert ^2)^2}. \end{aligned}$$
(2.7)

In [2] the following equality was also given:

$$\begin{aligned} \Vert \widetilde{\nabla } f(x) \Vert ^2= (1-\Vert x\Vert ^2)\left( \Vert \nabla f (x)\Vert ^2 -|\mathcal {R}f(x)|^2 \right) . \end{aligned}$$
(2.8)

For an analytic map \(\psi : B_E \rightarrow B_E\), \(x \in B_E\) and \(w \in E\) we will use the infinitesimal Kobayashi metric described in [10]. For a complex Hilbert space E, this metric can be described in terms of the automorphisms \(\varphi _x\) by:

$$\begin{aligned} \kappa _E(x,w)=\Vert \varphi _{x}'(0)^{-1}(w)\Vert \ \text{ for } x \in B_E \text{ and } w \in E. \end{aligned}$$

We will use \(\kappa (x,w)\) and \(\kappa (\psi (x),\psi '(x)(w))\) for an analytic self-map \(\psi : B_E\rightarrow B_E\) several times in the sequel. Notice that:

$$\begin{aligned} \kappa (\psi (x),\psi '(x)(w))=\Vert \varphi _{\psi (x)}'(0)^{-1}(\psi '(x)(w))\Vert . \end{aligned}$$
(2.9)

Lemma 2.7

If \(\psi : B_E \rightarrow B_E\) is analytic and \(x \in B_E\) then:

  1. (a)

    For \(w \in E\):

    $$\begin{aligned} \frac{\Vert w\Vert ^2}{1-\Vert x\Vert ^2} \le \kappa (x,w)^2 \le \frac{\Vert w\Vert ^2}{(1-\Vert x\Vert ^2)^2} \end{aligned}$$
    (2.10)

    and:

    $$\begin{aligned} \frac{\Vert \psi '(x)(w)\Vert ^2}{1-\Vert \psi (x)\Vert ^2} \le \kappa (\psi (x),\psi '(x)(w))^2 \le \frac{\Vert \psi '(x)(w)\Vert ^2}{(1-\Vert \psi (x)\Vert ^2)^2}. \end{aligned}$$
    (2.11)
  2. (b)

    If there is \(w_x \in E\) satisfying \(\psi '(x)(w_x)=\Vert \psi '(x)\Vert \psi (x)\) then:

    $$\begin{aligned} \frac{\Vert \psi '(x)\Vert \Vert \psi (x)\Vert }{1-\Vert \psi (x)\Vert ^2} = \kappa (\psi (x),\psi '(x)(w_x)) \le \frac{\Vert \psi '(x)\Vert }{1-\Vert \psi (x)\Vert ^2} \end{aligned}$$
    (2.12)

    and under the condition \(w_x \ne 0\), then:

    $$\begin{aligned} \frac{\kappa (\psi (x),\psi '(x)(w_x))}{\kappa (x,w_x)} \ge \tau _{\psi }(x) \frac{\Vert \psi (x)\Vert }{\Vert w_x\Vert }. \end{aligned}$$
    (2.13)

Proof

We will prove a). By (2.7) and (2.9) we obtain:

$$\begin{aligned} \kappa (x,w)^2=\frac{(1-\Vert x\Vert ^2) \Vert w\Vert ^2+| \langle w,x\rangle |^2}{(1-\Vert x\Vert ^2)^2}. \end{aligned}$$

Hence:

$$\begin{aligned} \frac{\Vert w\Vert ^2}{(1-\Vert x\Vert ^2)} \le \kappa (x,w)^2 \le \frac{\Vert w\Vert ^2}{(1-\Vert x\Vert ^2)^2} \end{aligned}$$

where last inequality is true because \(|\langle w,x \rangle | \le \Vert w \Vert \Vert x\Vert \), so we conclude (2.10). Following the same pattern, we obtain a proof for (2.11).

Now we prove b). We have:

$$\begin{aligned} \kappa (\psi (x),\psi '(x)(w_x))^2= & {} \frac{(1-\Vert \psi (x)\Vert ^2) \Vert \psi '(x)(w_x)\Vert ^2+| \langle \psi '(x)(w_x),\psi (x)\rangle |^2}{(1-\Vert \psi (x)\Vert ^2)^2} \\= & {} \frac{(1-\Vert \psi (x)\Vert ^2)\Vert \psi '(x)\Vert ^2 \Vert \psi (x)\Vert ^2+\Vert \psi (x)\Vert ^4 \Vert \psi '(x)\Vert ^2}{(1-\Vert \psi (x)\Vert ^2)^2}\\= & {} \frac{\Vert \psi '(x)\Vert ^2 \Vert \psi (x)\Vert ^2}{(1-\Vert \psi (x)\Vert ^2)^2} \end{aligned}$$

and we obtain inequality (2.12). Together with inequality (2.10) results in (2.13) since:

$$\begin{aligned} \frac{\kappa (\psi (x),\psi '(x)(w_x))}{\kappa (x,w_x)} \ge \frac{1-\Vert x\Vert ^2}{1-\Vert \psi (x)\Vert ^2} \frac{\Vert \psi '(x)\Vert \Vert \psi (x)\Vert }{\Vert w_x\Vert } \end{aligned}$$

and we conclude the result. \(\square \)

From Lemma 2.7 we have:

Lemma 2.8

For any \(x \in B_E\) and \(w \in E {\setminus } \{0\}\):

$$\begin{aligned} \frac{\kappa (\psi (x),\psi '(x)(w))}{\kappa (x,w)} \le \frac{\sqrt{1-\Vert x\Vert ^2}}{1-\Vert \psi (x)\Vert ^2} \left\| \psi '(x) \left( \frac{w}{\Vert w\Vert }\right) \right\| \end{aligned}$$
(2.14)

and:

$$\begin{aligned} \frac{\kappa (\psi (x),\psi '(x)(w))}{\kappa (x,w)} \ge \frac{1-\Vert x\Vert ^2}{\sqrt{1-\Vert \psi (x)\Vert ^2}} \left\| \psi '(x) \left( \frac{w}{\Vert w\Vert }\right) \right\| . \end{aligned}$$
(2.15)

The following lemma is just a contractive property of the infinitesimal Kobayashi metric. We omit the proof:

Lemma 2.9

If \(\psi \) is an analytic self-map on \(B_E\), then for any \(x \in B_E\) and \(w \in E {\setminus } \{0\}\) we have:

$$\begin{aligned} \frac{\kappa (\psi (x),\psi '(x)(w))}{\kappa (x,w)}=\frac{\Vert \varphi _{\psi (x)}'(0)^{-1}(\psi '(x)(w))\Vert }{\Vert \varphi _{x}'(0)^{-1}(w)\Vert } \le 1. \end{aligned}$$

The following extension of the Schwarz-Pick lemma generalizes a result of Kalaj [12] when we deal with an infinite dimensional space. The same result for bounded symmetric domains can be found in [5].

Corollary 2.10

Consider an analytic self map \(\psi \) on \(B_E\). Then:

$$\begin{aligned} \frac{1-\Vert x\Vert ^2}{\sqrt{1-\Vert \psi (x)\Vert ^2}} \Vert \psi '(x)\Vert \le 1 \ \text{ for } \text{ all } x \in B_E. \end{aligned}$$

Proof

Applying Lemma 2.9 and using inequality (2.15) in Lemma 2.7 we are done. \(\square \)

Remark 2.11

Hamada and Kohr [11] proved that Corollary 2.10 is sharp. Kalaj [12] also proved this sharpness by considering for all \(t \in (0,\pi /2)\) the self-map \(\psi _t: B_2 \rightarrow B_2\) defined by \(\psi _t(z,w)=( z \sin t, \cos t)\).

2.2 Results on bounded below composition operators

We will apply the study on the automorphisms \(\varphi _x\) to study bounded below composition operators. Hamada [10] provided a necessary condition in the context of the unit ball of a \(JB^*-\)triple by considering the existence of \(\varepsilon >0\) and \(0< r < 1\) such that if \(y \in B_E\) then \(\rho (\psi (x_y),y) \le r\) for any \(x_y \in B_E\) satisfying \(\tau _{\psi }^*(x_y) \ge \varepsilon \) where:

$$\begin{aligned} \tau _{\psi }^*(x_y)=\sup \left\{ \frac{\kappa _E(\psi (x_y),\psi '(x_y)(y))}{\kappa _E(x_y,y)}: w \in E {\setminus } \{0\} \right\} \end{aligned}$$

We provide a necessary condition for the Hilbert case by adapting the proof of Theorem 2 in [6] and using \(\widetilde{\tau _\psi }(x_y)\) instead of \(\tau _{\psi }^*(x_y)\):

Theorem 2.12

Consider an analytic self map \(\psi \) on \(B_E\) and suppose that \(C_{\psi }: \mathcal {B}(B_E) \rightarrow \mathcal {B}(B_E)\) is a bounded below operator. Then there are \(\varepsilon >0\) and \(0< r < 1\) such that if \(y \in B_E\) we have \(\rho (\psi (x_y),y) \le r\) for some \(x_y \in B_E\) satisfying \(\widetilde{\tau _\psi }(x_y) \ge \varepsilon \).

Proof

If \(C_\psi \) is a bounded below operator, consider \(y \in B_E\) and let \(f: B_E \rightarrow \mathbb {C}\) be an analytic function given by \(f_y(x)=1/(1-\langle x,y \rangle ).\)

We have:

$$\begin{aligned} f_y'(x)=\frac{\langle \cdot , y \rangle }{(1-\langle x,y \rangle )^2} \end{aligned}$$

so we have:

$$\begin{aligned} \Vert f_y\Vert _\mathcal {B}= & {} \sup _{x \in B_E} (1-\Vert x\Vert ^2) \Vert f_y'(x)\Vert =\sup _{x \in B_E} (1-\Vert x\Vert ^2)\frac{\Vert y\Vert }{|1-\langle x,y \rangle |^2} \\= & {} \sup _{x \in B_E} \Vert y\Vert \frac{1-\Vert \varphi _y(x)\Vert ^2}{1-\Vert y\Vert ^2}= \frac{\Vert y\Vert }{1-\Vert y\Vert ^2}. \end{aligned}$$

Define \(g_y: B_E \rightarrow \mathbb {C}\) by \(g_y(x)=\displaystyle f_y(x)/\Vert f_y\Vert _\mathcal {B}\) which is analytic and it is satisfied that \(\Vert g_y\Vert _\mathcal {I}\ge \Vert g_y\Vert _\mathcal {B}=1\). Using Lemma 2.4, there is a positive number k satisfying \(\Vert g_y \circ \psi \Vert _\mathcal {I}\ge k \Vert g_y\Vert _\mathcal {I}\) so since:

$$\begin{aligned} \Vert g_y \circ \psi \Vert _\mathcal {I}=\sup _{x \in B_E} \Vert \widetilde{\nabla } (g_y \circ \psi )(x)\Vert , \end{aligned}$$

there exists \(x_y \in B_E\) which satisfies \(\Vert \widetilde{\nabla } (g_y \circ \psi )(x_y) \Vert \ge k/2\). Hence:

$$\begin{aligned} \frac{k}{2} \le \Vert \widetilde{\nabla } (g_y \circ \psi )(x_y) \Vert= & {} \sup _{w \in E {\setminus } \{0\} } \frac{\Vert \widetilde{\nabla } (g_y \circ \psi )(x_y) (w) \Vert }{\Vert w\Vert }\nonumber \\= & {} \sup _{w \in E {\setminus } \{0\} } \frac{|g_y'(\psi (x_y))(\psi '(x_y)(w))|}{\Vert \varphi _{x_y}'(0)^{-1}(w)\Vert }\nonumber \\= & {} \sup _{w \in E {\setminus } \{0\} } \frac{|g_y'(\psi (x_y))(\psi '(x_y)(w))|}{\kappa (\psi (x_y),\psi '(x_y)(w))} \frac{\kappa (\psi (x_y),\psi '(x_y)(w))}{\kappa (x_y,w)}\nonumber \\\le & {} \Vert \widetilde{\nabla } g_y (\psi (x_y))\Vert \widetilde{\tau _{\psi }}(x_y) \end{aligned}$$
(2.16)

where using (2.6) and (2.14) in Lemma 2.8 it is clearly deduced last inequality. By (2.8) we conclude:

$$\begin{aligned} \Vert \widetilde{\nabla } g_y (\psi (x_y))\Vert ^2= & {} (1-\Vert \psi (x_y)\Vert ^2)( \Vert \nabla g_y (\psi (x_y))\Vert ^2-|\mathcal {R}g_y (\psi (x_y))|^2)\\= & {} (1-\Vert \psi (x_y)\Vert ^2) \frac{(1-\Vert y\Vert ^2)^2}{\Vert y\Vert ^2}\\{} & {} \quad \left( \frac{\Vert y\Vert ^2}{|1-\langle \psi (x_y),y \rangle |^4}-\frac{|\langle \psi (x_y),y\rangle |^2}{|1-\langle \psi (x_y),y \rangle |^4}\right) \\= & {} (1-\Vert \psi (x_y)\Vert ^2)(1-\Vert y\Vert ^2)^2 \frac{1-\left| \Big \langle \psi (x_y),\frac{y}{\Vert y\Vert } \Big \rangle \right| ^2}{|1-\langle \psi (x_y),y \rangle |^4}. \end{aligned}$$

The inequality \(|1-\langle c,d/\Vert d\Vert \rangle | \le 2 |1-\langle c,d \rangle |\) for any \(c,d \in B_E\) is clear since:

$$\begin{aligned} |1-\langle c,d/\Vert d\Vert \rangle |\le & {} |1-\langle c,d \rangle |+|\langle c,d-d/\Vert d\Vert \rangle | \\\le & {} |1-\langle c,d \rangle |+ 1-\Vert d\Vert \le |1-\langle c,d \rangle |+1-|\langle c,d \rangle | \\= & {} 2 |1-\langle c,d \rangle |. \end{aligned}$$

From:

$$\begin{aligned} 1-\left| \Big \langle \psi (x_y),\frac{y}{\Vert y\Vert } \Big \rangle \right| ^2 \le \left( 1+\left| \Big \langle \psi (x_y),\frac{y}{\Vert y\Vert } \Big \rangle \right| \right) \left( 1-\left| \Big \langle \psi (x_y),\frac{y}{\Vert y\Vert } \Big \rangle \right| \right) \end{aligned}$$

we conclude:

$$\begin{aligned} \Vert \widetilde{\nabla } g (\psi (x_y))\Vert ^2\le & {} 4 (1-\Vert \psi (x_y)\Vert ^2)(1-\Vert y\Vert ^2) \frac{1}{|1-\langle \psi (x_y),y \rangle |^2} \\= & {} 4 (1-\Vert \varphi _y (\psi (x_y))\Vert ^2)= 4(1-\rho (y,\psi (x_y))^2) \end{aligned}$$

so:

$$\begin{aligned} \frac{k}{2} \le 2 (1-\rho (y,\psi (x_y))^2)^{1/2} \widetilde{\tau _{\psi }}(x_y) \end{aligned}$$

which is true if and only if \(\displaystyle \frac{k}{4} \le (1-\rho (y,\psi (x_y))^2)^{1/2} \widetilde{\tau _{\psi }}(x_y)\)

and we have \(\widetilde{\tau _{\psi }}(x_y) \ge \frac{k}{4}\).

Using (2.16) we have:

$$\begin{aligned} \frac{k}{2} \le 2 (1-\rho (y,\psi (x_y))^2)^{1/2} \sup _{w \in E {\setminus } \{0\}}\frac{\kappa (\psi (x_y),\psi '(x_y)(w))}{\kappa (x_y,w)} \end{aligned}$$

so applying Lemma 2.9:

$$\begin{aligned} \sqrt{1-\rho (y,\psi (x_y))^2} \ge k/4 \end{aligned}$$

and this expression is equivalent to:

$$\begin{aligned} \rho (y,\psi (x_y)) \le \sqrt{1-k^2/16}. \end{aligned}$$

Taking \(r=\sqrt{1-k^2/16}\) and \(\varepsilon =k/4\) we conclude the result. \(\square \)

Hamada [10] provided a sufficient condition for a composition operator to be bounded below when we deal with unit balls of \(JB^*-\)triples. We will provide a new condition by extending the result given in Theorem 2.2. Hence we will consider the following condition: we will suppose that \(\psi (x_y)\) belongs to the range of \(\psi '(x_y)\). Recall that, as we have mentioned in (1.5), there is a positive constant \(A_0\) satisfying:

$$\begin{aligned} \Vert f\Vert _\mathcal {R}\le \Vert f\Vert _\mathcal {B}\le \Vert f\Vert _\mathcal {I}\le A_0 \Vert f\Vert _R \ \text{ for } \text{ any } f \in \mathcal {B}(B_E). \end{aligned}$$

Theorem 2.13

Let \(\psi \) be an analytic self-map on \(B_E\). Suppose there are constants \(r,\varepsilon \) satisfying \(0< r < \frac{1}{15 A_0}\) and \(\varepsilon > 0\) which also satisfies that for any \(y \in \mathcal {B}_E\) there exists \(x_y \in B_E\) such that \(\rho (\psi (x_y),y)<r\) and \({\tau _\psi }(x_y) > \varepsilon \). Suppose also that \(\psi (x_y) = \psi '(x_y)(w_{x_y})\) for some point \(w_{x_y} \in E\) satisfying \(\sup _{y \in B_E} \Vert w_{x_y}\Vert < +\infty \). Then we have that \(C_{\psi }: \mathcal {B}(B_E) \rightarrow \mathcal {B}(B_E)\) is bounded below.

Proof

Consider a function \(f \in \mathcal {B}(B_E)\) satisfying \(\Vert f\Vert _\mathcal {I}=1\). We show the existence of \(k >0\) which satisfies that \(\Vert f \circ \psi \Vert _\mathcal {I}\ge k\). We have that \(\Vert f\Vert _\mathcal {R}\ge \Vert f\Vert _\mathcal {I}/A_0\) by (1.5) so \(\Vert f\Vert _\mathcal {R}\ge 1/A_0\). Taking \(y \in B_E\) satisfying \(| \mathcal {R}f(y)|(1-\Vert y\Vert ^2) \ge 14/(15 A_0)\), there exists \(x_y \in B_E\) such that \(\rho (y,\psi (x_y)) < r\) and \(\tau _\psi (x_y) > \varepsilon \). Using (1.4) and (2.6) and also by (2.9), we have for any \(w \in E {\setminus } \{0\}\):

$$\begin{aligned} \Vert f \circ \psi \Vert _\mathcal {I}= & {} \sup _{x \in B_E} \Vert \widetilde{\nabla } (f \circ \psi )(x)\Vert \\\ge & {} \frac{|(f \circ \psi )'(x_y)(w)|}{\Vert \varphi _{x_y}'(0)^{-1}(w)\Vert }= \frac{|f'(\psi (x_y))(\psi '(x_y)(w))|}{\kappa (\psi (x_y),\psi '(x_y)(w))} \frac{\kappa (\psi (x_y),\psi '(x_y)(w))}{\kappa (x_y,w)}. \end{aligned}$$

Since \(\psi (x_y) \in \psi '(x_y)(E)\), there exists \(w_{x_y} \in E\) such that \(\psi '(x_y)(w_{x_y})=\Vert \psi '(x_y)\Vert \psi (x_y)\) so the inequality above is clearly true taking \(w_{x_y}\). Using (2.12) from Lemma 2.7 we obtain:

$$\begin{aligned} \frac{|f'(\psi (x_y))(\psi '(x_y)(w_{x_y}))|}{\kappa (\psi (x_y),\psi '(x_y)(w_{x_y}))}= & {} \frac{|f'(\psi (x_y))(\Vert \psi '(x_y)\Vert \psi (x_y))|}{\kappa (\psi (x_y),\psi '(x_y)(w_{x_y}))}\\= & {} \frac{\Vert \psi '(x_y)\Vert |f'(\psi (x_y))( \psi (x_y))|(1-\Vert \psi (x_y)\Vert ^2)}{\Vert \psi '(x_y)\Vert \Vert \psi (x_y)\Vert }\\= & {} \frac{|\mathcal {R}f( \psi (x_y))| (1-\Vert \psi (x_y)\Vert ^2)}{\Vert \psi (x_y)\Vert } \end{aligned}$$

so:

$$\begin{aligned} \Vert f \circ \psi \Vert _\mathcal {I}\ge \frac{\mathcal {R}f(\psi (x_y)) (1-\Vert \psi (x_y)\Vert ^2)}{\Vert \psi (x_y)\Vert }\frac{\kappa (\psi (x_y),\psi '(x_y)(w_{x_y}))}{\kappa (x_y,w_{x_y})} \end{aligned}$$

and using (2.13) from Lemma 2.7 we have:

$$\begin{aligned} \Vert f \circ \psi \Vert _\mathcal {I}\ge & {} \frac{|\mathcal {R}f(\psi (x_y))| (1-\Vert \psi (x_y)\Vert ^2)}{\Vert \psi (x_y)\Vert } \frac{\Vert \psi (x_y)\Vert \tau _\psi (x_y)}{\Vert w_{x_y}\Vert } \\\ge & {} |\mathcal {R}f(\psi (x_y))| (1-\Vert \psi (x_y)\Vert ^2) \frac{\varepsilon }{\Vert w_{x_y}\Vert }. \end{aligned}$$

From Corollary 1.2, we obtain:

$$\begin{aligned} | |\mathcal {R}f(\psi (x_y))| (1-\Vert \psi (x_y)\Vert ^2)-|\mathcal {R}f(y)| (1-\Vert y\Vert ^2)| \le 14 \Vert f\Vert _\mathcal {I}\rho _E(\psi (x_y),y) \end{aligned}$$

and using \(\Vert f\Vert _\mathcal {I}=1\), we conclude:

$$\begin{aligned} \Vert f \circ \psi \Vert _\mathcal {I}\ge & {} (|\mathcal {R}f(y)| (1-\Vert y\Vert ^2)| - 14 \rho (\psi (x_y),y)) \frac{\varepsilon }{\Vert w_{x_y}\Vert } \\\ge & {} \left( \frac{14}{15 A_0} - 14 r \right) \frac{\varepsilon }{\sup _{y \in B_E}\Vert w_{x_y}\Vert } \end{aligned}$$

so we can take:

$$\begin{aligned} k=\displaystyle 14\left( \frac{1}{15 A_0} - r \right) \frac{\varepsilon }{\sup _{y \in B_E}\Vert w_{x_y}\Vert } >0 \end{aligned}$$

and we finally conclude \(\Vert C_\psi (f)\Vert _\mathcal {I}\ge k\). \(\square \)

Now we check that the automorphism \(\varphi _a\) of \(B_E\) for any \(a \in B_E\) satisfies the conditions of Theorem 2.13. We will need this result, which shows \(\tau _{\varphi _a}(x) \ge 1\) for all \(x \in B_E\).

Lemma 2.14

For all \(a \in B_E\) we have \(\tau _{\varphi _a}(x) \ge 1\) if \(x \in B_E\).

Proof

Notice that by (1.3) we have:

$$\begin{aligned} \frac{1-\Vert x\Vert ^2}{1-\Vert \varphi _a(x)\Vert ^2}= \frac{|1-\langle x,a \rangle |^2}{1-\Vert a\Vert ^2} \end{aligned}$$

and since: \(\varphi _a(x)=(P_a +s_a Q_a) \left( m_a(x)\right) \), then we obtain:

$$\begin{aligned} \varphi _a'(x)=(P_a+s_a Q_a)'(m_a(x)) \circ m_a'(x)=(P_a+s_a Q_a)(m_a'(x)) \end{aligned}$$

so we have:

$$\begin{aligned} \Vert \varphi _a'(x)\Vert ^2= \Vert P_a(m_a'(x))\Vert ^2+s_a^2 \Vert Q_a(m_a'(x))\Vert ^2 \ge \Vert P_a(m_a'(x))\Vert ^2. \end{aligned}$$

It is easy that:

$$\begin{aligned} m_a'(x)(y)=\frac{-(1-\langle x,a \rangle )y+ \langle y,a \rangle (a-x)}{(1-\langle x, a \rangle )^2} \end{aligned}$$

so:

$$\begin{aligned} \Vert \varphi _a'(x)\Vert \ge \Vert P_a(m_a'(x))\Vert= & {} \sup _{y \in \overline{B}_E} \Vert P_a(m_a'(x))(y))\Vert \\\ge & {} \left\| P_a \left( m_a'(x) \left( \frac{a}{\Vert a\Vert }\right) \right) \right\| \\= & {} \left\| P_a \left( \frac{-(1-\langle x,a \rangle ) \frac{a}{\Vert a\Vert }+ \langle \frac{a}{\Vert a\Vert },a \rangle (a-x)}{(1-\langle x, a \rangle )^2} \right) \right\| \end{aligned}$$

so we obtain:

$$\begin{aligned} \tau _{\varphi _a}(x)\ge & {} \frac{|1-\langle x,a \rangle |^2}{1-\Vert a\Vert ^2} \left\| P_a \left( \frac{-(1-\langle x,a \rangle ) \frac{a}{\Vert a\Vert }+ \langle \frac{a}{\Vert a\Vert },a \rangle (a-x)}{(1-\langle x, a \rangle )^2} \right) \right\| \\= & {} \frac{1}{1-\Vert a\Vert ^2} \left\| P_a \left( -(1-\langle x,a \rangle ) \frac{a}{\Vert a\Vert }+ \langle \frac{a}{\Vert a\Vert },a \rangle (a-x) \right) \right\| \\= & {} \frac{1}{1-\Vert a\Vert ^2} \left\| \left( -(1-\langle x,a \rangle ) \frac{a}{\Vert a\Vert }+ \Vert a\Vert a- \frac{\langle x,a \rangle }{\Vert a\Vert ^2} \Vert a\Vert a \right) \right\| \\= & {} \frac{1}{1-\Vert a\Vert ^2} \left\| -\frac{1-\Vert a\Vert ^2}{\Vert a\Vert } a \right\| =1 \end{aligned}$$

and we have \(\tau _{\varphi _a}(x) \ge 1\) so we are done. \(\square \)

Remark 2.15

Conditions of Theorem 2.13 are satisfied by the automorphisms \(\varphi _a\) for any \(a \in B_E\) since by Lemma 2.14 we have:

$$\begin{aligned} \frac{1-\Vert x\Vert ^2}{1-\Vert \varphi _a(x)\Vert ^2} \Vert \varphi _a'(x)\Vert \ge 1 \end{aligned}$$

so choose \(\varepsilon =1\), \(r=0\) and for any \(y \in B_E\) take \(x_y= \varphi _a(y)\). Furthermore, \(\varphi _a(x_y)=\varphi _a(\varphi _a(y))=y = \varphi _a'(x_y)(w_{x_y})\) for some \(w_{x_y}\) belonging to E which satisfies \(\sup _{y \in B_E} \Vert w_{x_y}\Vert < +\infty \) since the operator \(\varphi _a'(x_y)\) is invertible on the space E.