Skip to main content
Log in

The n-th residual relative operator entropy \({\mathfrak {R}}^{[n]}_{x,y}(A|B)\)

  • Original Paper
  • Published:
Advances in Operator Theory Aims and scope Submit manuscript

Abstract

Let A and B be strictly positive linear operators on a Hilbert space \({\mathcal {H}}\). We have introduced the n-th relative operator entropy \(S^{[n]}(A|B)\), the n-th Tsallis relative operator entropy \(T_x^{[n]}(A|B)\) and the n-th generalized relative operator entropy \(S_y^{[n]}(A|B)\) so far, and have shown their properties. In addition, we have introduced the n-th residual relative operator entropy \({\mathfrak {R}}^{[n]}_{x,y}(A|B)\) which includes \(S^{[n]}(A|B)\), \(T_x^{[n]}(A|B)\) and \(S_y^{[n]}(A|B)\) as special cases (Isa et al. in Ann Funct Anal, 2020). In this paper, we investigate some properties of \({\mathfrak {R}}^{[n]}_{x,y}(A|B)\) and show that they are applicable to see the properties of \(S^{[n]}(A|B)\), \(T_x^{[n]}(A|B)\) and \(S_y^{[n]}(A|B)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujii, J.I., Kamei, E.: Interpolational paths and their derivatives. Math. Jpn. 39, 557–560 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Fujii, J.I., Kamei, E.: Relative operator entropy in noncommutative information theory. Math. Jpn. 34, 341–348 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Fujii, J.I., Kamei, E.: Path of Bregman–Petz operator divergence. Sci. Math. Jpn. 70, 329–333 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Fujii, M., Mićić, J., Pečarić, J., Seo, Y.: Recent Developments of Mond–Pečarić Method in Operator Inequalities. Monographs in Inequalities, vol. 4. Element, Zagreb (2012)

  5. Furuta, T.: Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators. Linear Algebra Appl. 381, 219–235 (2004)

    Article  MathSciNet  Google Scholar 

  6. Isa, H., Ito, M., Kamei, E., Tohyama, H., Watanabe, M.: Relative operator entropy, operator divergence and Shannon inequality. Sci. Math. Jpn. 75, 289–298 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Isa, H., Ito, M., Kamei, E., Tohyama, H., Watanabe, M.: On relations between operator valued \(\alpha\)-divergence and relative operator entropies. Sci. Math. Jpn. 78, 215–228 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Isa, H., Ito, M., Kamei, E., Tohyama, H., Watanabe, M.: Velocity and acceleration on the paths \(A \natural_t B\) and \(A \sharp _{t, r} B\). Sci. Math. Jpn. 82, 7–17 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Isa, H., Kamei, E., Tohyama, H., Watanabe, M.: The \(n\)-th relative operator entropies and operator divergences. Ann. Funct. Anal. (2020). https://doi.org/10.1007/s43034-019-00004-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Kamei, E.: Paths of operators parametrized by operator means. Math. Jpn. 39, 395–400 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Kubo, F., Ando, T.: Means of positive linear operators. Math Ann. 246, 205–224 (1980)

    Article  MathSciNet  Google Scholar 

  12. Nakamura, M., Umegaki, H.: A note on the entropy for operator algebras. Proc. Jpn. Acad. 37, 149–154 (1961)

    Article  MathSciNet  Google Scholar 

  13. Yanagi, K., Kuriyama, K., Furuichi, S.: Generalized Shannon inequalities based on Tsallis relative operator entropy. Linear Algebra Appl. 394, 109–118 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Tohyama.

Additional information

Communicated by Qingxiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tohyama, H., Kamei, E. & Watanabe, M. The n-th residual relative operator entropy \({\mathfrak {R}}^{[n]}_{x,y}(A|B)\). Adv. Oper. Theory 6, 18 (2021). https://doi.org/10.1007/s43036-020-00120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43036-020-00120-3

Keywords

Mathematics Subject Classification

Navigation