Skip to main content
Log in

PTEN Expression in Human Granulosa Cells Is Associated with Ovarian Responses and Clinical Outcomes in IVF

  • Reproductive Genetics: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 25 May 2021

This article has been updated

Abstract

The ovarian reserve determines the success of in vitro fertilization (IVF) and embryo transfer treatment. It predicts the ovarian response in controlled ovarian hyperstimulation cycles. Apoptosis in granulosa cells surrounding oocytes is important for ovarian function and has been closely associated with follicular atresia. PTEN (encoding phosphatase and tensin homolog) is a well-known tumor suppressor gene that functions as a mediator of apoptosis and is crucial for mammal reproduction. In the present study, we analyzed the expression level of PTEN in human granulosa cells and aimed to investigate its association with the ovarian response and clinical outcomes in IVF. Apoptosis in granulosa cells were analyzed using Annexin V-Allophycocyanin staining after PTEN short hairpin RNA lentivirus transfection. Real-time fluorescent quantitative PCR analysis showed that the PTEN transcript level was significantly higher in poor responders and significantly lower in high responders, compared with that in normal responders. However, PTEN expression in the pregnancy group decreased slightly, but not significantly, compared with that in the non-pregnancy group. The apoptosis rate of granulosa cells declined significantly after 24-h transfection of the PTEN-shRNA lentivirus. These results suggest a fundamental role of PTEN in the regulation of follicular development, and that it might be involved in the pathogenesis of follicular dysplasia and ovarian dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Leijdekkers JA, Eijkemans MJC, van Tilborg TC, Oudshoorn SC, McLernon DJ, Bhattacharya S, et al. Predicting the cumulative chance of live birth over multiple complete cycles of in vitro fertilization: an external validation study. Hum Reprod. 2018;33(9):1684–95.

    Article  CAS  Google Scholar 

  2. Kim HH. Markers of ovarian reserve: is it possible to estimate an ovarian age? Fertil Steril. 2017;108(6):950–1.

    Article  Google Scholar 

  3. Tatone C, Di Emidio G, Barbonetti A, Carta G, Luciano AM, Falone S, et al. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update. 2018;24(3):267–89.

    Article  CAS  Google Scholar 

  4. Fabregues F, Gonzalez-Foruria I, Penarrubia J, Carmona F. Ovarian response is associated with anogenital distance in patients undergoing controlled ovarian stimulation for IVF. Hum Reprod. 2018;33(9):1696–704.

    Article  CAS  Google Scholar 

  5. Kallen A, Polotsky AJ, Johnson J. Untapped reserves: controlling primordial follicle growth activation. Trends Mol Med. 2018;24(3):319–31.

    Article  CAS  Google Scholar 

  6. Steiner AZ, Pritchard D, Stanczyk FZ, Kesner JS, Meadows JW, Herring AH, et al. Association between biomarkers of ovarian reserve and infertility among older women of reproductive age. JAMA. 2017;318(14):1367–76.

    Article  CAS  Google Scholar 

  7. Lee JS, Hong GY, Lee KH, Kim TE. Changes in anti-mullerian hormone levels as a biomarker for ovarian reserve after ultrasound-guided high-intensity focused ultrasound treatment of adenomyosis and uterine fibroid. BJOG. 2017;124(Suppl 3):18–22.

    Article  CAS  Google Scholar 

  8. Worku T, Rehman ZU, Talpur HS, Bhattarai D, Ullah F, Malobi N, et al. MicroRNAs: new insight in modulating follicular atresia: a review. Int J Mol Sci. 2017;18(2).

  9. Rimon-Dahari N, Heinemann-Yerushalmi L, Hadas R, Kalich-Philosoph L, Ketter D, Nevo N, et al. Vasorin: a newly identified regulator of ovarian folliculogenesis. FASEB J. 2018;32(4):2124–36.

    Article  CAS  Google Scholar 

  10. Kordus RJ, LaVoie HA. Granulosa cell biomarkers to predict pregnancy in ART: pieces to solve the puzzle. Reproduction. 2017;153(2):R69–83.

    Article  CAS  Google Scholar 

  11. Carou MC, Cruzans PR, Maruri A, Farina MG, Fiorito CD, Olea G, et al. Apoptosis of bovine granulosa cells: intracellular pathways and differentiation. Acta Histochem. 2017;119(5):462–70.

    Article  CAS  Google Scholar 

  12. Hussein MR. Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update. 2005;11(2):162–77.

    Article  Google Scholar 

  13. Wood M, Rajkovic A. Genomic markers of ovarian reserve. Semin Reprod Med. 2013;31(06):399–415.

    Article  CAS  Google Scholar 

  14. Papa A, Wan L, Bonora M, Salmena L, Song MS, Hobbs RM, et al. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell. 2014;157(3):595–610.

    Article  CAS  Google Scholar 

  15. Leslie NR, den Hertog J. Mutant PTEN in cancer: worse than nothing. Cell. 2014;157(3):527–9.

    Article  CAS  Google Scholar 

  16. Chang EM, Lim E, Yoon S, Jeong K, Bae S, Lee DR, et al. Cisplatin induces overactivation of the dormant primordial follicle through PTEN/AKT/FOXO3a pathway which leads to loss of ovarian reserve in mice. PLoS One. 2015;10(12):e0144245.

    Article  Google Scholar 

  17. Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science (New York, NY). 2008;319(5863):611–3.

    Article  CAS  Google Scholar 

  18. Alfranca A, Campanero MR, Redondo JM. New methods for disease modeling using lentiviral vectors. Trends Mol Med. 2018;24(10):825–37.

    Article  CAS  Google Scholar 

  19. La Marca A, Ferraretti AP, Palermo R, Ubaldi FM. The use of ovarian reserve markers in IVF clinical practice: a national consensus. Gynecol Endocrinol. 2016;32(1):1–5.

    Article  Google Scholar 

  20. Yao J, Geng L, Huang R, Peng W, Chen X, Jiang X, et al. Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction. 2017;154(3):97–105.

    Article  Google Scholar 

  21. Chen P, Yao JF, Huang RF, Zheng FF, Jiang XH, Chen X, et al. Effect of BIX-01294 on H3K9me2 levels and the imprinted gene Snrpn in mouse embryonic fibroblast cells. Biosci Rep. 2015;35(5).

  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  Google Scholar 

  23. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8.

    Article  CAS  Google Scholar 

  24. Wang YM, Sheng GY. Cell proliferation and signal pathway after knockdown and RESC concurrent rescue of RNAi lentiviral vector on human PTEN gene in T-lymphocytes. Zhongguo Dang Dai Er Ke Za Zhi. 2010;12(12):979–83.

    CAS  PubMed  Google Scholar 

  25. McLaughlin M, Kinnell HL, Anderson RA, Telfer EE. Inhibition of phosphatase and tensin homologue (PTEN) in human ovary in vitro results in increased activation of primordial follicles but compromises development of growing follicles. Mol Hum Reprod. 2014;20(8):736–44.

    Article  CAS  Google Scholar 

  26. Brandmaier A, Hou SQ, Shen WH. Cell cycle control by PTEN. J Mol Biol. 2017;429:2265–77.

    Article  CAS  Google Scholar 

  27. Quan Y, Wang Z, Gong L, Peng X, Richard MA, Zhang J, et al. Exosome miR-371b-5p promotes proliferation of lung alveolar progenitor type II cells by using PTEN to orchestrate the PI3K/Akt signaling. Stem Cell Res Ther. 2017;8(1):138.

    Article  Google Scholar 

  28. Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16(10):715–25.

    Article  CAS  Google Scholar 

  29. Artini PG, Tatone C, Sperduti S, D'Aurora M, Franchi S, Di Emidio G, et al. Cumulus cells surrounding oocytes with high developmental competence exhibit down-regulation of phosphoinositol 1,3 kinase/protein kinase B (PI3K/AKT) signalling genes involved in proliferation and survival. Hum Reprod. 2017;32(12):2474–84.

    Article  CAS  Google Scholar 

  30. Merhi Z, Polotsky AJ, Bradford AP, Buyuk E, Chosich J, Phang T, et al. Adiposity alters genes important in inflammation and cell cycle division in human cumulus granulosa cell. Reprod Sci. 2015;22(10):1220–8.

    Article  CAS  Google Scholar 

  31. Greenseid K, Jindal S, Hurwitz J, Santoro N, Pal L. Differential granulosa cell gene expression in young women with diminished ovarian reserve. Reprod Sci. 2011;18(9):892–9.

    Article  CAS  Google Scholar 

  32. Smeenk JM, Sweep FC, Zielhuis GA, Kremer JA, Thomas CM, Braat DD. Antimullerian hormone predicts ovarian responsiveness, but not embryo quality or pregnancy, after in vitro fertilization or intracyoplasmic sperm injection. Fertil Steril. 2007;87(1):223–6.

    Article  CAS  Google Scholar 

  33. La Marca A, Grisendi V, Giulini S, Sighinolfi G, Tirelli A, Argento C, et al. Live birth rates in the different combinations of the Bologna criteria poor ovarian responders: a validation study. J Assist Reprod Genet. 2015;32(6):931–7.

    Article  Google Scholar 

  34. Scully MM, Palacios-Helgeson LK, Wah LS, Jackson TA. Rapid estrogen signaling negatively regulates PTEN activity through phosphorylation in endometrial cancer cells. Hormones and Cancer. 2014;5(4):218–31.

    Article  CAS  Google Scholar 

  35. Jagarlamudi K, Liu L, Adhikari D, Reddy P, Idahl A, Ottander U, et al. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS One. 2009;4(7):e6186.

    Article  Google Scholar 

  36. Hong L, Peng S, Li Y, Fang Y, Wang Q, Klausen C, et al. miR-106a increases granulosa cell viability and is downregulated in women with diminished ovarian reserve. J Clin Endocrinol Metab. 2018;103(6):2157–66.

    Article  Google Scholar 

  37. Li MF, Guan H, Zhang DD. Effect of overexpression of PTEN on apoptosis of liver cancer cells. Genet Mol Res. 2016;15(2).

  38. Canu N. Design and cloning of short hairpin RNAs (shRNAs) into a lentiviral silencing vector to study the function of selected proteins in neuronal apoptosis. Methods Mol Biol. 2015;1254:115–28.

    Article  CAS  Google Scholar 

  39. Goto M, Iwase A, Ando H, Kurotsuchi S, Harata T, Kikkawa F. PTEN and Akt expression during growth of human ovarian follicles. J Assist Reprod Genet. 2007;24(11):541–6.

    Article  Google Scholar 

  40. Yuan Y, Ida JM, Paczkowski M, Krisher RL. Identification of developmental competence-related genes in mature porcine oocytes. Mol Reprod Dev. 2011;78(8):565–75.

    Article  CAS  Google Scholar 

  41. Yang L, Wang Y, Shi S, Xie L, Liu T, Wang Y, et al. The TNF-α-induced expression of miR-130b protects cervical cancer cells from the cytotoxicity of TNF-α. FEBS Open Bio. 2018;8(4):614–27.

    Article  CAS  Google Scholar 

  42. Lin D, Ran J, Zhu S, Quan S, Ye B, Yu A, et al. Effect of GOLPH3 on cumulus granulosa cell apoptosis and ICSI pregnancy outcomes. Sci Rep. 2017;7(1):7863.

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely acknowledged the assistance given by The Quanzhou Maternity & Child Healthcare Hospital, Fujian Province, 362000, P.R. China, and The School of Basic Medical Sciences, Fujian Medical University, Fujian Province, 350004, P. R. China, in this study.

Funding

This research was supported by the National Natural Science Foundation of China (81972714), the Natural Science Foundation of Fujian Province of China [grant number 2018 J01148], the Natural Science Foundation of Fujian Province of China (2019 J01140), the Young and Middle-aged Talent Training Program of Fujian Province of China (grant number 2019-ZQN-91), and the Science and Technology Project of Quanzhou [(2004)0010].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dianliang Lin or Xiaoyu Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Ethics

This research was reviewed and approved by the Ethics Committee of Quanzhou Maternity & Child Healthcare Hospital and the registration number is Ethics of 2019: No. 6.

Patient Consent

All participators were informed and written consent prior to the collection of samples.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was update to correct the affiliation of Xiaoyu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Huang, R., Li, M. et al. PTEN Expression in Human Granulosa Cells Is Associated with Ovarian Responses and Clinical Outcomes in IVF. Reprod. Sci. 28, 1910–1921 (2021). https://doi.org/10.1007/s43032-020-00429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00429-7

Keywords

Navigation