Skip to main content
Log in

Histologic Analysis of Testes from Prepubertal Patients Treated with Chemotherapy Associates Impaired Germ Cell Counts with Cumulative Doses of Cyclophosphamide, Ifosfamide, Cytarabine, and Asparaginase

  • Male Reproduction: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Cryopreservation of immature testicular tissue is an experimental strategy for the preservation of fertility in prepubertal boys that will be subjected to a gonadotoxic onset, as is the case of oncologic patients. Therefore, the objective of this study was to assess the impact of chemotherapeutic treatments on the testicular histologic phenotype in prepubertal patients. A total of 56 testicular tissue samples from pediatric patients between 0 and 16 years old (28 with at least one previous chemotherapeutic onset and 28 untreated controls) were histologically analyzed and age-matched compared. At least two 5-μm sections from testis per patient separated by a distance of 100 μm were immunostained for the germ cell marker VASA, the spermatogonial markers UTF1, PLZF, UCHL1, and SALL4, the marker for proliferative cells KI67, and the Sertoli cell marker SOX9. The percentage of tubule cross-sections positive for each marker and the number of positive cells per tubule cross-section were determined and association with the cumulative dose received of each chemotherapeutic drug was statistically assessed. Results indicated that alkylating agents, cyclophosphamide and ifosfamide, but also the antimetabolite cytarabine and asparaginase were associated with a decreased percentage of positive tubules and a lower number of positive cells per tubule for the analyzed markers. Our results provide new evidences of the potential of chemotherapeutic agents previously considered to have low gonadotoxic effects such as cytarabine and asparaginase to trigger a severe testicular phenotype, hampering the potential success of future fertility restoration in experimental programs of fertility preservation in prepubertal boys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All authors declare that all data and materials included in this manuscript comply with field standards.

References

  1. Jahnukainen K, Heikkinen R, Henriksson M, Cooper TG, Puukko-Viertomies LR, Makitie O. Semen quality and fertility in adult long-term survivors of childhood acute lymphoblastic leukemia. Fertil Steril. 2011;96(4):837–42. https://doi.org/10.1016/j.fertnstert.2011.07.1147.

    Article  PubMed  Google Scholar 

  2. Papadakis V, Vlachopapadopoulou E, Van Syckle K, Ganshaw L, Kalmanti M, Tan C, et al. Gonadal function in young patients successfully treated for Hodgkin disease. Med Pediatr Oncol. 1999;32(5):366–72. https://doi.org/10.1002/(sici)1096-911x(199905)32:5<366::aid-mpo10>3.0.co;2-7.

    Article  CAS  PubMed  Google Scholar 

  3. Green DM, Nolan VG, Goodman PJ, Whitton JA, Srivastava D, Leisenring WM, et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2014;61(1):53–67. https://doi.org/10.1002/pbc.24679.

    Article  CAS  PubMed  Google Scholar 

  4. Daudin M, Rives N, Walschaerts M, Drouineaud V, Szerman E, Koscinski I, et al. Sperm cryopreservation in adolescents and young adults with cancer: results of the French national sperm banking network (CECOS). Fertil Steril. 2015;103(2):478–86 e1. https://doi.org/10.1016/j.fertnstert.2014.11.012.

    Article  PubMed  Google Scholar 

  5. de Rooij DG. The spermatogonial stem cell niche. Microsc Res Tech. 2009;72(8):580–5. https://doi.org/10.1002/jemt.20699.

    Article  CAS  PubMed  Google Scholar 

  6. Medrano JV, Martinez-Arroyo AM, Sukhwani M, Noguera I, Quinonero A, Martinez-Jabaloyas JM, et al. Germ cell transplantation into mouse testes procedure. Fertil Steril. 2014;102(4):e11–2. https://doi.org/10.1016/j.fertnstert.2014.07.669.

    Article  CAS  PubMed  Google Scholar 

  7. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11303–7.

    Article  CAS  Google Scholar 

  8. Honaramooz A, Snedaker A, Boiani M, Scholer H, Dobrinski I, Schlatt S. Sperm from neonatal mammalian testes grafted in mice. Nature. 2002;418(6899):778–81. https://doi.org/10.1038/nature00918.

    Article  CAS  PubMed  Google Scholar 

  9. Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11(5):715–26. https://doi.org/10.1016/j.stem.2012.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jahnukainen K, Ehmcke J, Nurmio M, Schlatt S. Autologous ectopic grafting of cryopreserved testicular tissue preserves the fertility of prepubescent monkeys that receive sterilizing cytotoxic therapy. Cancer Res. 2012;72(20):5174–8. https://doi.org/10.1158/0008-5472.CAN-12-1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Z, Nie YH, Zhang CC, Cai YJ, Wang Y, Lu HP, et al. Generation of macaques with sperm derived from juvenile monkey testicular xenografts. Cell Res. 2016;26(1):139–42. https://doi.org/10.1038/cr.2015.112.

    Article  PubMed  Google Scholar 

  12. Fayomi AP, Peters K, Sukhwani M, Valli-Pulaski H, Shetty G, Meistrich ML, et al. Autologous grafting of cryopreserved prepubertal rhesus testis produces sperm and offspring. Science. 2019;363(6433):1314–9. https://doi.org/10.1126/science.aav2914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poels J, Van Langendonckt A, Many MC, Wese FX, Wyns C. Vitrification preserves proliferation capacity in human spermatogonia. Hum Reprod. 2013;28(3):578–89. https://doi.org/10.1093/humrep/des455.

    Article  CAS  PubMed  Google Scholar 

  14. Baert Y, Van Saen D, Haentjens P, In't Veld P, Tournaye H, Goossens E. What is the best cryopreservation protocol for human testicular tissue banking? Hum Reprod. 2013;28(7):1816–26. https://doi.org/10.1093/humrep/det100.

    Article  CAS  PubMed  Google Scholar 

  15. Picton HM, Wyns C, Anderson RA, Goossens E, Jahnukainen K, Kliesch S, et al. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Hum Reprod. 2015;30(11):2463–75. https://doi.org/10.1093/humrep/dev190.

    Article  PubMed  Google Scholar 

  16. Medrano JV, Andres MDM, Garcia S, Herraiz S, Vilanova-Perez T, Goossens E, et al. Basic and clinical approaches for fertility preservation and restoration in cancer patients. Trends Biotechnol. 2017;36:199–215. https://doi.org/10.1016/j.tibtech.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  17. Keros V, Hultenby K, Borgstrom B, Fridstrom M, Jahnukainen K, Hovatta O. Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum Reprod. 2007;22(5):1384–95. https://doi.org/10.1093/humrep/del508.

    Article  CAS  PubMed  Google Scholar 

  18. Wyns C, Van Langendonckt A, Wese FX, Donnez J, Curaba M. Long-term spermatogonial survival in cryopreserved and xenografted immature human testicular tissue. Hum Reprod. 2008;23(11):2402–14. https://doi.org/10.1093/humrep/den272.

    Article  PubMed  Google Scholar 

  19. Wyns C, Curaba M, Petit S, Vanabelle B, Laurent P, Wese JF, et al. Management of fertility preservation in prepubertal patients: 5 years’ experience at the Catholic University of Louvain. Hum Reprod. 2011;26(4):737–47. https://doi.org/10.1093/humrep/deq387.

    Article  CAS  PubMed  Google Scholar 

  20. Wyns C, Collienne C, Shenfield F, Robert A, Laurent P, Roegiers L, et al. Fertility preservation in the male pediatric population: factors influencing the decision of parents and children. Hum Reprod. 2015;30(9):2022–30. https://doi.org/10.1093/humrep/dev161.

    Article  CAS  PubMed  Google Scholar 

  21. Ginsberg JP, Carlson CA, Lin K, Hobbie WL, Wigo E, Wu X, et al. An experimental protocol for fertility preservation in prepubertal boys recently diagnosed with cancer: a report of acceptability and safety. Hum Reprod. 2010;25(1):37–41. https://doi.org/10.1093/humrep/dep371.

    Article  CAS  PubMed  Google Scholar 

  22. Ginsberg JP, Li Y, Carlson CA, Gracia CR, Hobbie WL, Miller VA, et al. Testicular tissue cryopreservation in prepubertal male children: an analysis of parental decision-making. Pediatr Blood Cancer. 2014;61(9):1673–8. https://doi.org/10.1002/pbc.25078.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Valli-Pulaski H, Peters KA, Gassei K, Steimer SR, Sukhwani M, Hermann BP, et al. Testicular tissue cryopreservation: 8 years of experience from a coordinated network of academic centers. Hum Reprod. 2019;34(6):966–77. https://doi.org/10.1093/humrep/dez043.

  24. Anderson RA, Mitchell RT, Kelsey TW, Spears N, Telfer EE, Wallace WH. Cancer treatment and gonadal function: experimental and established strategies for fertility preservation in children and young adults. Lancet Diabetes Endocrinol. 2015;3(7):556–67. https://doi.org/10.1016/S2213-8587(15)00039-X.

    Article  CAS  PubMed  Google Scholar 

  25. Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril. 2013;100(5):1180–6. https://doi.org/10.1016/j.fertnstert.2013.08.010.

    Article  CAS  PubMed  Google Scholar 

  26. Skinner R, Mulder RL, Kremer LC, Hudson MM, Constine LS, Bardi E, et al. Recommendations for gonadotoxicity surveillance in male childhood, adolescent, and young adult cancer survivors: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in collaboration with the PanCareSurFup Consortium. Lancet Oncol. 2017;18(2):e75–90. https://doi.org/10.1016/S1470-2045(17)30026-8.

    Article  PubMed  Google Scholar 

  27. Green DM, Liu W, Kutteh WH, Ke RW, Shelton KC, Sklar CA, et al. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. Lancet Oncol. 2014;15(11):1215–23. https://doi.org/10.1016/S1470-2045(14)70408-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poganitsch-Korhonen M, Masliukaite I, Nurmio M, Lahteenmaki P, van Wely M, van Pelt AMM, et al. Decreased spermatogonial quantity in prepubertal boys with leukaemia treated with alkylating agents. Leukemia. 2017;31(6):1460–3. https://doi.org/10.1038/leu.2017.76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stukenborg JB, Alves-Lopes JP, Kurek M, Albalushi H, Reda A, Keros V, et al. Spermatogonial quantity in human prepubertal testicular tissue collected for fertility preservation prior to potentially sterilizing therapy. Hum Reprod. 2018;33(9):1677–83. https://doi.org/10.1093/humrep/dey240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jahnukainen K, Mitchell RT, Stukenborg JB. Testicular function and fertility preservation after treatment for haematological cancer. Curr Opin Endocrinol Diabetes Obes. 2015;22(3):217–23. https://doi.org/10.1097/MED.0000000000000156.

    Article  CAS  PubMed  Google Scholar 

  31. Medrano JV, Rombaut C, Simon C, Pellicer A, Goossens E. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril. 2016;106(6):1539–49 e8. https://doi.org/10.1016/j.fertnstert.2016.07.1065.

    Article  CAS  PubMed  Google Scholar 

  32. Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, et al. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril. 2014;102(2):566–80 e7. https://doi.org/10.1016/j.fertnstert.2014.04.036.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lovelace DL, Gao Z, Mutoji K, Song YC, Ruan J, Hermann BP. The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development. 2016;143(11):1893–906. https://doi.org/10.1242/dev.132761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5.

    CAS  PubMed  Google Scholar 

  35. Kenney LB, Laufer MR, Grant FD, Grier H, Diller L. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001;91(3):613–21. https://doi.org/10.1002/1097-0142(20010201)91:3<613::aid-cncr1042>3.0.co;2-r.

    Article  CAS  PubMed  Google Scholar 

  36. Duca Y, Di Cataldo A, Russo G, Cannata E, Burgio G, Compagnone M et al. Testicular function of childhood cancer survivors: who is worse? J Clin Med. 2019;8(12). https://doi.org/10.3390/jcm8122204.

  37. Ridola V, Fawaz O, Aubier F, Bergeron C, de Vathaire F, Pichon F, et al. Testicular function of survivors of childhood cancer: a comparative study between ifosfamide- and cyclophosphamide-based regimens. Eur J Cancer. 2009;45(5):814–8. https://doi.org/10.1016/j.ejca.2009.01.002.

    Article  CAS  PubMed  Google Scholar 

  38. Sklar CA, Robison LL, Nesbit ME, Sather HN, Meadows AT, Ortega JA, et al. Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Children Cancer Study Group. J Clin Oncol. 1990;8(12):1981–7. https://doi.org/10.1200/JCO.1990.8.12.1981.

    Article  CAS  PubMed  Google Scholar 

  39. Chow EJ, Stratton KL, Leisenring WM, Oeffinger KC, Sklar CA, Donaldson SS, et al. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2016;17(5):567–76. https://doi.org/10.1016/S1470-2045(16)00086-3.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Masliukaite I, Hagen JM, Jahnukainen K, Stukenborg JB, Repping S, van der Veen F, et al. Establishing reference values for age-related spermatogonial quantity in prepubertal human testes: a systematic review and meta-analysis. Fertil Steril. 2016;106(7):1652–7 e2. https://doi.org/10.1016/j.fertnstert.2016.09.002.

    Article  PubMed  Google Scholar 

  41. Al-Shmgani H, Ibrahim R. Cytarabine induced reproductive histopathological changes in albino male mice. J Biotechnol Res Center. 2017;11:6–12.

    Google Scholar 

Download references

Funding

This work was supported by a private donation of the Celtic Submarí club—Villareal C.F. to Hospital Universitario y Politécnico La Fe intended to promote the scientific research on fertility preservation in child with cancer, and an AES project grant (PI16/00931) conceded by the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Contributions

JVM, ENM, AP, and MMA conceived this work. MMA and EG provided samples. JVM, TVP, and ANG conducted the experiments. DH performed statistical analysis of data. JVM analyzed data and wrote the manuscript. All listed authors revised and approved the manuscript.

Corresponding author

Correspondence to Jose V. Medrano.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Samples used in this study were recruited at Hospital La Fe in Valencia (Spain) (32 samples) and UZ Brussel in Brussels (Belgium) (36 samples) after the approval by the respective Institutional Review Boards of Hospital La Fe (ref: 2013/0457) and UZ Brussel (ref: 2000/149D and 2017/061).

Consent to Participate

An informed consent is by parents or legal guardians of the patients.

Code Availability

All statistical analyses were performed using R (version 3.5.3) and the R packages glmnet (version 2.0–16), cluster (version 2.0.7–1) and brms (version 2.8.0).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 19 kb)

Supplemental Table III.

Original data matrix regarding the mean of cell counts for each marker in testicular samples employed for the fuzzy clustering analysis to identify differences between untreated and treated patients. Classification of treated patients as weakly or severely affected resulting from fuzzy clustering analysis has been also included in order to facilitate the identification of patients of each group. (XLSX 19 kb)

Supplemental Table IV.

Original data matrix regarding the cumulative dose of each drug received by patients. Classification of treated patients as weakly or severely affected resulting from fuzzy clustering analysis has been also included in order to facilitate the identification of patients of each group. (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medrano, J.V., Hervás, D., Vilanova-Pérez, T. et al. Histologic Analysis of Testes from Prepubertal Patients Treated with Chemotherapy Associates Impaired Germ Cell Counts with Cumulative Doses of Cyclophosphamide, Ifosfamide, Cytarabine, and Asparaginase. Reprod. Sci. 28, 603–613 (2021). https://doi.org/10.1007/s43032-020-00357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00357-6

Keywords

Navigation