Skip to main content
Log in

Calcium Oscillatory Patterns and Oocyte Activation During Fertilization: a Possible Mechanism for Total Fertilization Failure (TFF) in Human In Vitro Fertilization?

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This paper reviews the effects of calcium oscillatory patterns in oocytes and early embryo development. Total fertilization failure (TFF) is the failure of fertilization in all oocytes in a human IVF cycle, even after treatment with intracytoplasmic sperm injection (ICSI). It is not well understood and currently attributed to oocyte activation deficiency. Calcium signaling is important in oocyte activation events. Calcium oscillations, in particular, have been reported in animal and human oocytes after fertilization. Abnormal calcium oscillations after fertilization may be the principal mechanism for TFF. While studies also establish strong associations between abnormal calcium oscillatory patterns and suboptimal developmental outcomes, critical basic parameters and their mechanism of action have yet to be identified. Empirical use of artificial oocyte activation (AOA) methods has shown initial success in helping patients overcome TFF. The AOA methods attempt to raise calcium levels after fertilization, but the efficacy and safety of these AOA methods are still in early stages of addressing TFF. Additional information about calcium oscillatory patterns and the effects of AOA in human ART may allow the prevention of TFF or allow treatment of TFF patients effectively and safely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kahyaoglu I, Demir B, Turkkanı A, et al. Total fertilization failure: is it the end of the story? J Assist Reprod Genet. https://doi.org/10.1007/s10815-014-0281-5.

  2. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8. https://doi.org/10.1016/0140-6736(92)92425-F.

    Article  CAS  PubMed  Google Scholar 

  3. Neri QV, Lee B, Rosenwaks Z, et al. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium. 2014;55:24–37.

    Article  CAS  Google Scholar 

  4. Shinar S, Almog B, Levin I, et al. Total fertilization failure in intra-cytoplasmic sperm injection cycles-classification and management. Gynecol Endocrinol. 2014;30:593–6. https://doi.org/10.3109/09513590.2014.911275.

    Article  PubMed  Google Scholar 

  5. Farhi J, Cohen K, Mizrachi Y, et al. Should ICSI be implemented during IVF to all advanced-age patients with non-male factor subfertility? Reprod Biol Endocrinol. 2019;17:30. https://doi.org/10.1186/s12958-019-0474-y.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hojnik N, Kovačič B. Oocyte activation failure: physiological and clinical aspects. In: Embryology - theory and practice: IntechOpen; 2019.

  7. Bhattacharya S, Hamilton MP, Shaaban M, et al. Conventional in-vitro fertilisation versus intracytoplasmic sperm injection for the treatment of non-male-factor infertility: a randomised controlled trial. Lancet (London, England). 2001;357:2075–9. https://doi.org/10.1016/s0140-6736(00)05179-5.

    Article  CAS  Google Scholar 

  8. Flaherty SP, Payne D, Matthews CD. Fertilization failures and abnormal fertilization after intracytoplasmic sperm injection. In: Human reproduction: Oxford University Press; 1998. p. 155–64.

  9. Liu J, Nagy Z, Joris H, et al. Analysis of 76 total fertilization failure cycles out of 2732 intracytoplasmic sperm injection cycles. Hum Reprod. 1995;10:2630–6.

    Article  CAS  Google Scholar 

  10. Flaherty SP, Dianna P, Swann NJ, Matthews CD. Aetiology of failed and abnormal fertilization after intracytoplasmic sperm injection. Hum Reprod. 1995;10:2623–9. https://doi.org/10.1093/oxfordjournals.humrep.a135757.

    Article  CAS  PubMed  Google Scholar 

  11. Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update. 2008;14:431–46. https://doi.org/10.1093/humupd/dmn025.

    Article  PubMed  Google Scholar 

  12. Yeste M, Jones C, Amdani SN, et al. Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update. 2016;22:23–47. https://doi.org/10.1093/humupd/dmv040.

    Article  CAS  PubMed  Google Scholar 

  13. Ducibella T, Schultz RM, Ozil JP. Role of calcium signals in early development. Semin Cell Dev Biol. 2006;17:324–32.

    Article  CAS  Google Scholar 

  14. Vanden Meerschaut F, Nikiforaki D, Heindryckx B, De Sutter P. Assisted oocyte activation following ICSI fertilization failure. Reprod BioMed Online. 2014;28:560–71.

    Article  Google Scholar 

  15. Nikiforaki D, Vanden Meerschaut F, De Roo C, et al. Effect of two assisted oocyte activation protocols used to overcome fertilization failure on the activation potential and calcium releasing pattern. Fertil Steril. 2016;105:798–806.e2. https://doi.org/10.1016/j.fertnstert.2015.11.007.

    Article  CAS  PubMed  Google Scholar 

  16. Vanden Meerschaut F, Nikiforaki D, De Gheselle S, et al. Assisted oocyte activation is not beneficial for all patients with a suspected oocyte-related activation deficiency. Hum Reprod. 2012;27:1977–84. https://doi.org/10.1093/humrep/des097.

    Article  Google Scholar 

  17. Miller N, Biron-Shental T, Sukenik-Halevy R, et al. Oocyte activation by calcium ionophore and congenital birth defects: a retrospective cohort study. Fertil Steril. 2016. https://doi.org/10.1016/j.fertnstert.2016.04.025.

  18. Vanden Meerschaut F, Nikiforaki D, De Roo C, et al. Comparison of pre-and post-implantation development following the application of three artificial activating stimuli in a mouse model with round-headed sperm cells deficient for oocyte activation. Hum Reprod. 2013;28:1190–8. https://doi.org/10.1093/humrep/det038.

    Article  CAS  Google Scholar 

  19. Mateizel I, Verheyen G, Van de Velde H, et al. Obstetric and neonatal outcome following ICSI with assisted oocyte activation by calcium ionophore treatment. J Assist Reprod Genet. 2018;35:1005–10. https://doi.org/10.1007/s10815-018-1124-6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lechleiter J, Girard S, Peralta E, Clapham D. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science. 1991;252(80):123–6. https://doi.org/10.1126/science.2011747.

  21. Bootman M, Niggli E, Berridge M, Lipp P. Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol. 1997;499:307–14. https://doi.org/10.1113/jphysiol.1997.sp021928.

  22. Petersen OH, Tepikin AV. Polarized calcium signaling in exocrine gland cells. ER: endoplasmic reticulum Annu Rev Physiol. 2008;70:273–99. https://doi.org/10.1146/annurev.physiol.70.113006.100618.

    Article  CAS  Google Scholar 

  23. Dupont G, Swillens S, Clair C, et al. Hierarchical organization of calcium signals in hepatocytes: from experiments to models. In: Biochimica et Biophysica Acta - molecular cell research: Elsevier; 2000. p. 134–52.

  24. Worth RG, Kim M-K, Kindzelskii AL, et al. Signal sequence within FcRIIA controls calcium wave propagation patterns: apparent role in phagolysosome fusion. Proc Natl Acad Sci U S A. 2003.

  25. Luo D, Yang D, Lan X, et al. Nuclear Ca2+ sparks and waves mediated by inositol 1,4,5-trisphosphate receptors in neonatal rat cardiomyocytes. Cell Calcium. 2008;43:165–74. https://doi.org/10.1016/j.ceca.2007.04.017.

    Article  CAS  PubMed  Google Scholar 

  26. Ross WN. Understanding calcium waves and sparks in central neurons. Nat Rev Neurosci. 2012;13:157–68.

    Article  CAS  Google Scholar 

  27. Boulware MJ, Marchant JS. Timing in Cellular Ca2+ Signaling. Curr Biol. 2008;18.

  28. Gordienko DV, Bolton TB. Crosstalk between ryanodine receptors and IP3 receptors as a factor shaping spontaneous Ca2+−release events in rabbit portal vein myocytes. J Physiol. 2002;542:743–62. https://doi.org/10.1113/jphysiol.2001.015966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Endo M, Tanaka M, Ogawa Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle Fibres. Nature. 1970;228:34–6. https://doi.org/10.1038/228034a0.

    Article  CAS  PubMed  Google Scholar 

  30. Uhlén P, Fritz N. Biochemistry of calcium oscillations. Biochem Biophys Res Commun. 2010;396:28–32. https://doi.org/10.1016/j.bbrc.2010.02.117.

    Article  CAS  PubMed  Google Scholar 

  31. Matson S, Markoulaki S, Ducibella T. Antagonists of myosin light chain kinase and of myosin II inhibit specific events of egg activation in fertilized mouse eggs1. Biol Reprod. 2006;74:169–76. https://doi.org/10.1095/biolreprod.105.046409.

    Article  CAS  PubMed  Google Scholar 

  32. Wakai T, Vanderheyden V, Fissore RA. Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations. Cold Spring Harb Perspect Biol. 2011;3:1–23.

    Article  Google Scholar 

  33. Reber S, Over S, Kronja I, Gruss OJ. CaM kinase II initiates meiotic spindle depolymerization independently of APC/C activation. J Cell Biol. 2008;183:1007–17. https://doi.org/10.1083/jcb.200807006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Castro A, Bernis C, Vigneron S, et al. The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene. 2005;24:314–25.

    Article  CAS  Google Scholar 

  35. Ozil J-P, Banrezes B, Tóth S, et al. Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev Biol. 2006;300:534–44. https://doi.org/10.1016/j.ydbio.2006.08.041.

    Article  CAS  PubMed  Google Scholar 

  36. Igarashi H, Knott JG, Schultz RM, Williams CJ. Alterations of PLCβ1 in mouse eggs change calcium oscillatory behavior following fertilization. Dev Biol. 2007;312:321–30. https://doi.org/10.1016/j.ydbio.2007.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ducibella T, Huneau D, Angelichio E, et al. Egg-to-embryo transition is driven by differential responses to ca(2+) oscillation number. Dev Biol. 2002;250:280–91.

    Article  CAS  Google Scholar 

  38. Wacquier B, Voorsluijs V, Combettes L, Dupont G. Coding and decoding of oscillatory Ca2+ signals. Semin Cell Dev Biol. 2019;94:11–9.

    Article  CAS  Google Scholar 

  39. Ullah G, Jung P, Machaca K. Modeling Ca2+ signaling differentiation during oocyte maturation. Cell Calcium. 2007;42:556–64. https://doi.org/10.1016/j.ceca.2007.01.010.

    Article  CAS  PubMed  Google Scholar 

  40. Wakai T, Zhang N, Vangheluwe P, Fissore RA. Regulation of endoplasmic reticulum Ca2+ oscillations in mammalian eggs. J Cell Sci. 2013;126:5714–24. https://doi.org/10.1242/jcs.136549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Homa ST. Calcium and meiotic maturation of the mammalian oocyte. Mol Reprod Dev. 1995;40:122–34. https://doi.org/10.1002/mrd.1080400116.

    Article  CAS  PubMed  Google Scholar 

  42. Arroyo A, Kim B, Yeh J. Luteinizing hormone action in human oocyte maturation and quality: signaling pathways, regulation. Clinical Impact Reprod Sci. 2020:1–30.

  43. Jones KT, Carroll J, Whittingham DG. Ionomycin, thapsigargin, ryanodine, and sperm induced Ca2+ release increase during meiotic maturation of mouse oocytes. J Biol Chem. 1995;270:6671–7. https://doi.org/10.1074/jbc.270.12.6671.

    Article  CAS  PubMed  Google Scholar 

  44. Kim BY, Yoon SY, Cha SK, et al. Alterations in calcium oscillatory activity in vitrified mouse eggs impact on egg quality and subsequent embryonic development. Pflugers Arch - Eur J Physiol. 2011;461:515–26. https://doi.org/10.1007/s00424-011-0955-0.

    Article  CAS  Google Scholar 

  45. MIYAZAKI S-I. Fertilization potential and calcium transients in mammalian eggs. (fertilization potential/intracellular calcium release/periodic Ca2+ transients/signal transduction/hamster egg). Develop Growth Differ. 1988;30:603–10. https://doi.org/10.1111/j.1440-169X.1988.00603.x.

    Article  CAS  Google Scholar 

  46. Szpila M, Walewska A, Sabat-Pośpiech D, et al. Postovulatory ageing modifies sperm-induced Ca2+ oscillations in mouse oocytes through a conditions-dependent, multi-pathway mechanism. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-019-48281-3

  47. Haverfield J, Nakagawa S, Love D, et al. Ca2+dynamics in oocytes from naturally-aged mice. Sci Rep. 2016;6. https://doi.org/10.1038/srep19357

  48. Kurokawa M, Fissore RA. ICSI-generated mouse zygotes exhibit altered calcium oscillations, inositol 1,4,5-trisphosphate receptor-1 down-regulation, and embryo development. Mol Hum Reprod. https://doi.org/10.1093/meolehr/gag072.

  49. Matson S, Ducibella T. The MEK inhibitor, U0126, alters fertilization-induced [ca 2+ ] i oscillation parameters and secretion: differential effects associated with in vivo and in vitro meiotic maturation. Dev Biol. 2007;306:538–48. https://doi.org/10.1016/j.ydbio.2007.03.029.

    Article  CAS  PubMed  Google Scholar 

  50. Vanden Meerschaut F, Leybaert L, Nikiforaki D, et al. Diagnostic and prognostic value of calcium oscillatory pattern analysis for patients with ICSI fertilization failure. Hum Reprod. 2013;28:87–98. https://doi.org/10.1093/humrep/des368.

    Article  CAS  Google Scholar 

  51. Szpila M, Walewska A, Sabat-Pośpiech D, et al. Postovulatory ageing modifies sperm-induced ca 2+ oscillations in mouse oocytes through a conditions-dependent, multi-pathway mechanism. Nature. . https://doi.org/10.1038/s41598-019-48281-3.

  52. Nozawa K, Satouh Y, Fujimoto T, et al. Sperm-borne phospholipase C zeta-1 ensures monospermic fertilization in mice. Sci Rep. 2018;8:1–10. https://doi.org/10.1038/s41598-018-19497-6.

    Article  CAS  Google Scholar 

  53. Taylor CT, Lawrence YM, Kingsland CR, et al. Fertilization and early embryology: oscillations in intracellular free calcium induced by spermatozoa in human oocytes at fertilization. Hum Reprod. 1993;8:2174–9. https://doi.org/10.1093/oxfordjournals.humrep.a137999.

    Article  CAS  PubMed  Google Scholar 

  54. Tesarik J, Sousa M, Testart J. Human oocyte activation after intracytoplasmic sperm injection. Hum Reprod. 1994;9:511–8. https://doi.org/10.1093/oxfordjournals.humrep.a138537

  55. Contributed Equally. ‡ R SYF. Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Hum Mol Genet. 2016;25:878–91. https://doi.org/10.1093/hmg/ddv617.

    Article  CAS  Google Scholar 

  56. Swann K, Windsor S, Campbell K, et al. Phospholipase C-ζ-induced Ca 2+ oscillations cause coincident cytoplasmic movements in human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil Steril. 2012;97:742–7. https://doi.org/10.1016/j.fertnstert.2011.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sousa M, Mendoza C, Barros A, Tesarik J. Calcium responses of human oocytes after intracytoplasmic injection of leukocytes, spermatocytes and round spermatids. Mol Hum Reprod. 1996;2:853–7. https://doi.org/10.1093/molehr/2.11.853.

    Article  CAS  PubMed  Google Scholar 

  58. Yanagida K, Katayose H, Hirata S, et al. Influence of sperm immobilization on onset of Ca2+ oscillations after ICSI. Hum Reprod. 2001;16:148–52. https://doi.org/10.1093/humrep/16.1.148.

    Article  CAS  PubMed  Google Scholar 

  59. Ajduk A, Ilozue T, Windsor S, et al. Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nat Commun. 2011;2:1–10. https://doi.org/10.1038/ncomms1424

  60. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21.

    Article  CAS  Google Scholar 

  61. Tóth S, Huneau D, Banrezes B, Ozil JP. Egg activation is the result of calcium signal summation in the mouse. Reproduction. 2006;131:27–34. https://doi.org/10.1530/rep.1.00764.

    Article  CAS  PubMed  Google Scholar 

  62. Liu Y, Han XJ, Liu MH, et al. Three-day-old human unfertilized oocytes after in vitro fertilization/intracytoplasmic sperm injection can be activated by calcium ionophore A23187 or strontium chloride and develop to blastocysts. Cell Rep. 2014;16:276–80. https://doi.org/10.1089/cell.2013.0081.

    Article  CAS  Google Scholar 

  63. Zhang J, Wang CW, Blaszcyzk A, et al. Electrical activation and in vitro development of human oocytes that fail to fertilize after intracytoplasmic sperm injection. Fertil Steril. 1999;72:509–12. https://doi.org/10.1016/s0015-0282(99)00264-2.

    Article  CAS  PubMed  Google Scholar 

  64. Kim JW, Kim SD, Yang SH, et al. Successful pregnancy after SrCl2 oocyte activation in couples with repeated low fertilization rates following calcium ionophore treatment. Syst Biol Reprod Med. 2014;60:177–82. https://doi.org/10.3109/19396368.2014.900832.

    Article  CAS  PubMed  Google Scholar 

  65. Dedkova EN, Sigova AA, Zinchenko VP. Mechanism of action of calcium ionophores on intact cells: Ionophore-resistant cells. Membr Cell Biol. 2000;13:357–68.

    CAS  PubMed  Google Scholar 

  66. Suganuma R, Walden CM, Butters TD, et al. Alkylated imino sugars, reversible male infertility-inducing agents, do not affect the genetic integrity of male mouse germ cells during short-term treatment despite induction of sperm Deformities1. Biol Reprod. 2005;72:805–13. https://doi.org/10.1095/biolreprod.104.036053.

    Article  CAS  PubMed  Google Scholar 

  67. Yamaguchi T, Ito M, Kuroda K, et al. The establishment of appropriate methods for egg-activation by human PLCZ1 RNA injection into human oocyte. Cell Calcium. 2017;65:22–30. https://doi.org/10.1016/j.ceca.2017.03.002.

    Article  CAS  PubMed  Google Scholar 

  68. Liu J, Lu Q, Liang R, et al. Communicating with mouse oocytes via regulating calcium oscillation patterns by nanosecond pulsed electric fields. Phys Rev Appl. 2019;11. https://doi.org/10.1103/PhysRevApplied.11.024001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Yeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Yeh, J. Calcium Oscillatory Patterns and Oocyte Activation During Fertilization: a Possible Mechanism for Total Fertilization Failure (TFF) in Human In Vitro Fertilization?. Reprod. Sci. 28, 639–648 (2021). https://doi.org/10.1007/s43032-020-00293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00293-5

Keywords

Navigation