Skip to main content

Advertisement

Log in

Melatonin 1A and 1B Receptors’ Expression Decreases in the Placenta of Women with Fetal Growth Restriction

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Melatonin and its metabolites prevent oxidative stress and apoptosis, and it is actively produced by the placenta during pregnancy. Melatonin 1A and 1B receptors are present in human villous trophoblastic cells. We aimed to investigate the expression of melatonin 1A and 1B receptors in human placental tissue in the case of placental insufficiency manifested as the intrauterine growth restriction syndrome of the fetus (IUGR). Thirty-two pregnant women aged 18–36 with placental insufficiency manifested at the term 36 weeks of gestation as the IUGR syndrome (the estimated fetal weight less than the 3rd percentile) were included in the experimental group; all their babies had the diagnosis confirmed at birth, which occurred after 37 weeks of gestation. The control group consisted of 30 women with uncomplicated pregnancy of the same term. Pieces of the placental tissue were obtained after deliveries, and melatonin 1A and 1B receptors were immunoassayed; the richness of melatonin receptors in the placental tissue was estimated on the basis of immunohistochemical (IHC) staining of receptors, calculated in the IHC image score. The optical density of melatonin 1A receptors in the placentas obtained from women whose pregnancies were complicated with IUGR was significantly lower than that in the placentas from uncomplicated pregnancies: generally in the trophoblast, it was 0.095 ± 0.0009 IHC image score (in the control group, 0.194 ± 0.0015, p < 0.0001); in the apical parts of the syncytiotrophoblast, 0.108 ± 0.0016 IHC image score (in the control group, 0.221 ± 0.0013, p < 0.0001); and in the stromal cells of placental villi, 0.112 ± 0.0013 IHC image score (in the control group, 0.156 ± 0.0011, p < 0.0001). The optical density of melatonin 1B receptors in placentas obtained from women whose pregnancies were complicated with IUGR was also lower than that in the placentas from uncomplicated pregnancies: generally in the trophoblast, it was 0.165 ± 0.0019 IHC image score (in the control group, 0.231 ± 0.0013, p < 0.0001), and in the apical parts of the syncytiotrophoblast, 0.188 ± 0.0028 IHC image score (in the control group, 0.252 ± 0.0009, p < 0.0001). There was no difference found in the optical density of melatonin 1B receptors in the stromal cells of placental villi between the two groups: in the experimental group, 0.109 ± 0.006 IHC image score, and in the control group, 0.114 ± 0.0011 (p = 0.65). Melatonin receptors 1A and 1B are significantly less expressed in the placental tissue in the case that pregnancy is complicated with placental insufficiency, manifested as the intrauterine growth restriction syndrome of the fetus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All raw data of the study are available by request.

References

  1. Guttmacher AE, Maddox YT, Spong CY. The human placenta project: placental structure, development, and function in real time. Placenta. 2014;35:303–4. https://doi.org/10.1016/j.placenta.2014.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Costa MA. The endocrine function of human placenta: an overview. Reprod BioMed Online. 2016;32:14–43. https://doi.org/10.1016/j.rbmo.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  3. Noyola-Martínez N, Halhali A, Barrera D. Steroid hormones and pregnancy. Gynecol Endocrinol. 2019;35:376–84. https://doi.org/10.1080/09513590.2018.1564742.

    Article  CAS  PubMed  Google Scholar 

  4. Lanoix D, Beghdadi H, Lafond J, Vaillancourt C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res. 2008;45:50–60. https://doi.org/10.1111/j.1600-079X.2008.00555.x.

    Article  CAS  PubMed  Google Scholar 

  5. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update. 2014;20:293–307. https://doi.org/10.1093/humupd/dmt054.

    Article  CAS  PubMed  Google Scholar 

  6. Soliman A, Lacasse AA, Lanoix D, Sagrillo-Fagundes L, Boulard V, Vaillancourt C. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J Pineal Res. 2015;59:38–46. https://doi.org/10.1111/jpi.12236.

    Article  CAS  PubMed  Google Scholar 

  7. Moghani-Ghoroghi F, Moshkdanian G, Sehat M, Nematollahi-Mahani SN, Ragerdi-Kashani I, Pasbakhsh P. Melatonin pretreated blastocysts along with calcitonin administration improved implantation by upregulation of heparin binding-epidermal growth factor expression in murine endometrium. Cell J. 2018;(19):599–606. https://doi.org/10.22074/cellj.2018.4737.

  8. Mokhtari F, Asbagh FA, Azmoodeh O, Bakhtiyari M, Almasi-Hashiani A. Effects of melatonin administration on chemical pregnancy rates of polycystic ovary syndrome patients undergoing intrauterine insemination: a randomized clinical trial. Int J Fertil Steril. 2019;(13):225–9. https://doi.org/10.22074/ijfs.2019.5717.

  9. Takayama H, Nakamura Y, Tamura H. Pineal gland (melatonin) affects the parturition time but not luteal function and fetal growth, in pregnant rats. Endocr J. 2003;50:37–43. https://doi.org/10.1507/endocrj.50.37.

    Article  CAS  PubMed  Google Scholar 

  10. Richter HG, Hansell JA, Raut S, Giussani DA. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res. 2009;46:357–64. https://doi.org/10.1111/j.1600-079X.2009.00671.x.

    Article  CAS  PubMed  Google Scholar 

  11. Abecia JA, Forcada F, Vazquez MI, Muino-Blanco T, Cebrian-Perez JA, Perez-Pe R, et al. Role of melatonin on embryo viability in sheep. Reprod Fertil Dev. 2019;31:82–92. https://doi.org/10.1071/RD18308.

    Article  Google Scholar 

  12. Song YK, Wu H, Wang XG, Haire A, Zhang XS, Zhang JL. Melatonin improves the efficiency of super-ovulation and timed artificial insemination in sheep. Peer J. 2019;7:e6750. https://doi.org/10.7717/peerj.6750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Venegas C, Garcia JA, Escames G, Ortiz F, López A, Doerrier C. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res. 2012;52:217–27. https://doi.org/10.1111/j.1600-079X.2011.00931.x.

    Article  CAS  PubMed  Google Scholar 

  14. Mauriz JL, Collado PS, Venerosco C, Reiter RJ, González-Gallego J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. J Pineal Res. 2013;54:1–14. https://doi.org/10.1111/j.1600-079X.2012.01014.x.

    Article  CAS  PubMed  Google Scholar 

  15. Sagrillo-Fagundes L, Soliman A, Vaillancourt C. Maternal and placental melatonin: actions and implication for successful pregnancies. Minerva Ginecol. 2014;66:251–66.

    CAS  PubMed  Google Scholar 

  16. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014;57:131–46. https://doi.org/10.1111/jpi.12162.

    Article  CAS  PubMed  Google Scholar 

  17. Hardeland R, Tan DX, Reiter RJ. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res. 2009;47:109–26. https://doi.org/10.1111/j.1600-079X.2009.00701.x.

    Article  CAS  PubMed  Google Scholar 

  18. Lanoix D, Guérin P, Vaillancourt C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J Pineal Res. 2012;53:417–25. https://doi.org/10.1111/j.1600-079X.2012.01012.x.

    Article  CAS  PubMed  Google Scholar 

  19. Tan DX, Manchester LC, Reiter RJ, Plummer BF. Cyclic 3-hydroxymelatonin: a melatonin metabolite generated as a result of hydroxyl radical scavenging. Biol Signals Recept. 1999;8:70–4. https://doi.org/10.1159/000014571.

    Article  CAS  PubMed  Google Scholar 

  20. Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub ST. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun. 1998;253:614–20. https://doi.org/10.1006/bbrc.1998.9826.

    Article  CAS  PubMed  Google Scholar 

  21. Wilkinson D, Shepherd E, Wallace EM. Melatonin for women in pregnancy for neuroprotection of the fetus. Cochrane Database Syst Rev. 2016;(Issue 3):CD010527. https://doi.org/10.1002/14651858.CD010527.pub2.

  22. Berbets A, Barbe A, Yuzko O. Constant light exposure terminates pregnancy in rats with pineal gland dysfunction, low melatonin level and pro-inflammatory response. Melatonin Res. 2019;(4):9–24. https://doi.org/10.32794/mr11250038.

  23. Berbets A, Koval H, Barbe A, Albota O, Yuzko O. Melatonin decreases and cytokines increase in women with placental insufficiency. J Matern Fetal Neonatal Med. 2019;25:1–6. https://doi.org/10.1080/14767058.2019.1608432.

    Article  CAS  Google Scholar 

  24. Hannan NJ, Binder NK, Beard S, Nguyen TV, Kaitu’u-Lino TJ, Tong S. Melatonin enhances antioxidant molecules in the placenta, reduces secretion of soluble fms-like tyrosine kinase 1 (sFLT) from primary trophoblast but does not rescue endothelial dysfunction: an evaluation of its potential to treat preeclampsia. PLoS One. 2018;(13):e0187082. https://doi.org/10.1371/journal.pone.0187082.

  25. Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9. https://doi.org/10.1046/j.1600-079x.2003.00092.x.

    Article  CAS  PubMed  Google Scholar 

  26. Tomas-Zapico C, Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res. 2005;39:99–104. https://doi.org/10.1111/j.1600-079X.2005.00248.x.

    Article  CAS  PubMed  Google Scholar 

  27. Lanoix D, Lacasse AA, Reiter RJ, Vaillancourt C. Melatonin: the smart killer: the human trophoblast as a model. Mol Cell Endocrinol. 2012;348:1–11. https://doi.org/10.1016/j.mce.2011.08.025.

    Article  CAS  PubMed  Google Scholar 

  28. Nardozza LM, Caetano AC, Zamarian AC, Mazzola JB, Silva CP, Marçal VM. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295:1061–77. https://doi.org/10.1007/s00404-017-4341-9.

    Article  PubMed  Google Scholar 

  29. Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333–9. https://doi.org/10.1002/uog.1588468.

    Article  CAS  PubMed  Google Scholar 

  30. McCowan LM, Figueras F, Anderson NH. Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy. Am J Obstet Gynecol. 2018;218(2S):S855–68. https://doi.org/10.1016/j.ajog.2017.12.004.

    Article  PubMed  Google Scholar 

  31. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements—a prospective study. Am J Obstet Gynecol. 1985;151(3):333–7. https://doi.org/10.1016/0002-9378(85)90298-4.

    Article  CAS  PubMed  Google Scholar 

  32. Burd I, Srinivas S, Paré E, Dharan V, Wang E. Is sonographic assessment of fetal weight influenced by formula selection? J Ultrasound Med. 2009;28(8):1019–24. https://doi.org/10.7863/jum.2009.28.8.1019.

    Article  PubMed  Google Scholar 

  33. Nicolaides KH, Wright D, Syngelaki A, Wright A, Akolekar R. Fetal Medicine Foundation fetal and neonatal population weight charts. Ultrasound Obstet Gynecol. 2018;52(1):44–51. https://doi.org/10.1002/uog.19073.

    Article  CAS  PubMed  Google Scholar 

  34. Voekt CA, Rinderknecht T, Hirsch HH, Blaich A, Hösli IM. Ultrasound indications for maternal STORCH testing in pregnancy. Swiss Med Wkly. 2017;147:w14534. doi.org. https://doi.org/10.4414/smw.2017.14534.

    Article  PubMed  Google Scholar 

  35. Lillie RD. Histopathologic technic and practical histochemistry. Philadelphia: Blackiston Co. Inc.; 1954.

    Google Scholar 

  36. Boenisch T, Farmilo AJ, Stead RH. Immunochemical staining methods. third ed. Carpinteria: DAKO Co.; 2001.

    Google Scholar 

  37. Varghese F, Bukhtari AB, Malhotra R, De A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 2014;9:e96801. https://doi.org/10.1371/journal.pone.0096801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Poon LC, Karagiannis G, Staboulidou I, Shafiei A, Nicolaides KH. Reference range of birth weight with gestation and first-trimester prediction of small-for-gestation neonates. Prenat Diagn. 2011;31(1):58–65. https://doi.org/10.1002/pd.2520.

    Article  PubMed  Google Scholar 

  39. Redline RW. Classification of placental lesions. Am J Obstet Gynecol. 2015;213(4 Suppl):S21–8. https://doi.org/10.1016/j.ajog.2015.05.056.

    Article  PubMed  Google Scholar 

  40. Audette MC, Levytska K, Lye SJ, Melamed N, Kingdom JC. Parental ethnicity and placental maternal vascular malperfusion pathology in healthy nulliparous women. Placenta. 2018 Jun;66:40–6. https://doi.org/10.1016/j.placenta.2018.04.014.

    Article  PubMed  Google Scholar 

  41. Chuffa LGA, Lupi LA, Cucielo MS, Silveira HS, Reiter RJ, Seiva FRF. Melatonin promotes uterine and placental health: potential molecular mechanisms. Int J Mol Sci. 2019;21(1):E300. https://doi.org/10.3390/ijms21010300.

    Article  CAS  PubMed  Google Scholar 

  42. Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27(2):101–10. https://doi.org/10.1385/ENDO:27:2:101.

    Article  CAS  PubMed  Google Scholar 

  43. Iwasaki S, Nakazawa K, Sakai J, Kometani K, Iwashita M, Yoshimura Y, et al. Melatonin as a local regulator of human placental function. J Pineal Res. 2005;39:261–5. https://doi.org/10.1111/j.1600-079X.2005.00244.x.

    Article  CAS  PubMed  Google Scholar 

  44. Waddell BJ, Wharfe MD, Crew RC, Mark PJ. A rhythmic placenta? Circadian variation, clock genes and placental function. Placenta. 2012;33(7):533–9. https://doi.org/10.1016/j.placenta.2012.03.008.

    Article  CAS  PubMed  Google Scholar 

  45. Beesley S, Lee J, Olcese J. Circadian clock regulation of melatonin MTNR1B receptor expression in human myometrial smooth muscle cells. Mol Hum Reprod. 2015;21(8):662–71. https://doi.org/10.1093/molehr/gav023.

    Article  CAS  PubMed  Google Scholar 

  46. Lanoix D, Lacasse AA, Reiter RJ, Vaillancourt C. Melatonin: the watchdog of villous trophoblast homeostasis against hypoxia/reoxygenation-induced oxidative stress and apoptosis. Mol Cell Endocrinol. 2013;381:35–45. https://doi.org/10.1016/j.mce.2013.07.010.

    Article  CAS  PubMed  Google Scholar 

  47. Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol. 2018;175(16):3263–80. https://doi.org/10.1111/bph.13950.

    Article  CAS  PubMed  Google Scholar 

  48. Reiter RJ, Tamura H, Tan DX, Xu XY. Melatonin and the circadian system: contributions to successful female reproduction. Fertil Steril. 2014;102:321–8. https://doi.org/10.1016/j.fertnstert.2014.06.014.

    Article  CAS  PubMed  Google Scholar 

  49. Berbets A. Rozlady snu ta zminy koncentratsii melatoninu v slyni u vagitnyh iz platsentarnoyu nedostatnistiu, realizovanoyu u vygliadi zatrymky vnutrishnioutrobnogo rostu ploda (Disorders of sleep and changes of concentrations of melatonin in saliva in pregnant women with placental insufficiency, realized as intrauterine fetal growth restriction) (in Ukrainian). Aktual’ni Pytannia Pediatrii, Akusherstva ta Ginecologii. 2019;(1):60–6. https://doi.org/10.11603/24116-4944.2019.1.10182.

  50. Marseglia L, D’Angelo G, Manti S, Reiter RJ, Gitto E. Potential utility of melatonin in preeclampsia, intrauterine fetal growth retardation, and perinatal asphyxia. Reprod Sci. 2016;23:970–7. https://doi.org/10.1177/1933719115612132.

    Article  CAS  PubMed  Google Scholar 

  51. Sánchez-Hidalgo M, Guerrero Montávez JM, Carrascosa-Salmoral Mdel P, Naranjo Gutierrez Mdel C, Lardone PJ, de la Lastra Romero CA. Decreased MT1 and MT2 melatonin receptor expression in extrapineal tissues of the rat during physiological aging. J Pineal Res. 2009;46(1):29–35. https://doi.org/10.1111/j.1600-079X.2008.00604.x.

    Article  CAS  PubMed  Google Scholar 

  52. Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol. 2016;56:361–83. https://doi.org/10.1146/annurev-pharmtox-010814-124742.

    Article  CAS  PubMed  Google Scholar 

  53. Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, et al. Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol. 2016;173(18):2702–25. https://doi.org/10.1111/bph.13536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aversa S, Pellegrino S, Barberi I, Reiter RJ, Gitto E. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J Matern Fetal Neonatal Med. 2012;25:207–21. https://doi.org/10.3109/14767058.2011.573827.

    Article  CAS  PubMed  Google Scholar 

  55. Corrêa RR, Barrilari SE, Guimarães CS, Rossi e Silva RC, Olegário JG, Cavellani CL. Expression of the melatonin receptor and tryptophan hydroxylase in placentas of the fetus with intra-uterine stress. Eur J Obstet Gynecol Reprod Biol. 2009;147:234–6. https://doi.org/10.1016/j.ejogrb.2009.07.015.

    Article  CAS  PubMed  Google Scholar 

  56. Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A. A review of melatonin, its receptors and drugs. Eurasian J Med. 2016;48:135–41. https://doi.org/10.5152/eurasianjmed.2015.0267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hobson SR, Gurusinghe S, Lim R, Alers NO, Miller SL, Kingdom JC, et al. Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia. J Pineal Res. 2018;65:e12508. https://doi.org/10.1111/jpi.12508.

    Article  CAS  PubMed  Google Scholar 

  58. Nagai R, Watanabe K, Wakatsuki A, Hamada F, Shinohara K, Hayashi Y. Melatonin preserves fetal growth in rats by protecting against ischemia/reperfusion-induced oxidative/nitrosative mitochondrial damage in the placenta. J Pineal Res. 2008;(45):271–6. https://doi.org/10.1111/j.1600-079X.2008.00586.x.

  59. Okatani Y, Wakatsuki A, Shinohara K, Taniguchi K, Fukaya T. Melatonin protects against oxidative mitochondrial damage induced in rat placenta by ischemia and reperfusion. J Pineal Res. 2001;31:173–8. https://doi.org/10.1034/j.1600-079x.2001.310212.x.

    Article  CAS  PubMed  Google Scholar 

  60. Sagrillo-Fagundes L, Assunção Salustiano EM, Ruano R, Markus RP, Vaillancourt C. Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J Pineal Res. 2018;65:e12520. https://doi.org/10.1111/jpi.12520.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express the heartiest acknowledgments to the patients who agreed to participate in the study and to the reviewers of the paper for their altruistic intellectual job as experts in the field.

Author information

Authors and Affiliations

Authors

Contributions

Andrii Berbets was responsible for the clinical management of the patients, sample processing, searching in databases, data analysis, and drafting of the manuscript. Igor Davydenko processed the immunoassaying of the samples. Adrian Barbe conducted the statistical analysis and drafting of the manuscript. Dmytro Konkov analyzed the data. Olena Albota was responsible for the recruiting of the patients. Oleksandr Yuzko was the project leader and was responsible for finalizing the manuscript.

Corresponding author

Correspondence to Andrii M. Berbets.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The study was approved by the Biological and Medical Ethics Committee of the Higher State Educational Establishment of Ukraine “Bukovinian State Medical University” (the minutes no. 3 dated March 30, 2017) and was carried out strictly in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans.

Consent to Participate

All the persons involved in the study, including researchers and patients, gave their written informed consents for participation.

Consent for Publication

All the persons involved in the study, including researchers and patients, gave their consents for publication.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berbets, A.M., Davydenko, I.S., Barbe, A.M. et al. Melatonin 1A and 1B Receptors’ Expression Decreases in the Placenta of Women with Fetal Growth Restriction. Reprod. Sci. 28, 197–206 (2021). https://doi.org/10.1007/s43032-020-00285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00285-5

Keywords

Navigation