Skip to main content

Advertisement

Log in

Estrogen Regulates Local Cysteine Metabolism in Mouse Myometrium

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Sulfur amino acid metabolism influences reproductive physiology, and transsulfuration in particular may be critical for normal cellular function. The sex hormone estrogen (E2) modulates gene expression and redox balance in some tissues by inducing the transsulfuration enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). The role of sex hormones in sulfur amino acid metabolism by uterine smooth muscle is not known. Here, we show that CBS and CSE proteins increase in the mouse myometrium during estrus and diestrus, respectively, suggesting that E2 reciprocally regulates myometrial CBS and CSE expression. In ovariectomized mice, exogenous E2 upregulates CBS and downregulates CSE levels. E2 promotes CBS mRNA and protein expression but attenuates CSE protein expression without affecting CSE mRNA. This pattern of E2-stimulated changes in transsulfuration enzyme expression is specific to the uterine smooth muscle. E2 does not change vaginal or cervical expression of CBS or CSE significantly, and E2 decreases expression of CSE in the liver without affecting CBS. E2 also downregulates myometrial cysteinesulfinic acid decarboxylase (CSAD) and decreases myometrial biochemical synthesis of the gaso-transmitter hydrogen sulfide (H2S). These findings suggest that myometrial sulfur amino acid metabolism may regulate uterine redox homeostasis, with implications for the source and metabolism of myometrial cysteine in high E2 states such as estrus and pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data and material are available upon request to the corresponding author.

References

  1. Wray S, Noble K. Sex hormones and excitation-contraction coupling in the uterus: the effects of oestrous and hormones. J Neuroendocrinol. 2008;20(4):451–61.

    Article  CAS  PubMed  Google Scholar 

  2. Condon JC, Kyathanahalli C, Anamthathmakula P, Jeyasuria P. Estrogen/estrogen receptor action and the pregnant myometrium. Curr Opin Physio. 2020;13:135–40.

    Article  Google Scholar 

  3. Anamthathmakula P, Kyathanahalli C, Ingles J, Hassan SS, Condon JC, Jeyasuria P. Estrogen receptor alpha isoform ERdelta7 in myometrium modulates uterine quiescence during pregnancy. EBioMedicine. 2019;39:520–30.

    Article  PubMed  Google Scholar 

  4. Wu SP, DeMayo FJ. Progesterone receptor signaling in uterine myometrial physiology and preterm birth. Curr Top Dev Biol. 2017;125:171–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hardy DB, Janowski BA, Corey DR, Mendelson CR. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol Endocrinol. 2006;20(11):2724–33.

    Article  CAS  PubMed  Google Scholar 

  6. Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update. 2016;22(5):535–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Faria CC, et al. The emerging role of estrogens in thyroid redox homeostasis and carcinogenesis. Oxidative Med Cell Longev. 2019;2019:2514312.

    Article  CAS  Google Scholar 

  8. Aitken RJ, Buckingham DW, Harkiss D, Paterson M, Fisher H, Irvine DS. The extragenomic action of progesterone on human spermatozoa is influenced by redox regulated changes in tyrosine phosphorylation during capacitation. Mol Cell Endocrinol. 1996;117(1):83–93.

    Article  CAS  PubMed  Google Scholar 

  9. Keller AC, et al. Elevated plasma homocysteine and cysteine are associated with endothelial dysfunction across menopausal stages in healthy women. J Appl Physiol (1985). 2019;126(6):1533–40.

    Article  CAS  Google Scholar 

  10. Clare CE, Brassington AH, Kwong WY, Sinclair KD. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. Annu Rev Anim Biosci. 2019;7:263–87.

    Article  CAS  PubMed  Google Scholar 

  11. Wheatley C. The return of the Scarlet Pimpernel: cobalamin in inflammation II — cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS. J Nutr Environ Med. 2007;16(3–4):181–211.

    Article  CAS  PubMed  Google Scholar 

  12. Guerra DD, Hurt KJ. Gasotransmitters in pregnancy: from conception to uterine involution. Biol Reprod. 2019;101(1):4–25.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maclean KN, Jiang H, Aivazidis S, Kim E, Shearn CT, Harris PS, et al. Taurine treatment prevents derangement of the hepatic gamma-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism. FASEB J. 2018;32(3):1265–80.

    Article  CAS  PubMed  Google Scholar 

  14. Mistry RK, Murray TVA, Prysyazhna O, Martin D, Burgoyne JR, Santos C, et al. Transcriptional regulation of cystathionine-γ-lyase in endothelial cells by NADPH oxidase 4-dependent signaling. J Biol Chem. 2016;291(4):1774–88.

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt AJ, Krieg J, Vedder H. Differential effects of glucocorticoids and gonadal steroids on glutathione levels in neuronal and glial cell systems. J Neurosci Res. 2002;67(4):544–50.

    Article  CAS  PubMed  Google Scholar 

  16. Lechuga TJ, Zhang HH, Sheibani L, Karim M, Jia J, Magness RR, et al. Estrogen replacement therapy in ovariectomized nonpregnant ewes stimulates uterine artery hydrogen sulfide biosynthesis by selectively up-regulating cystathionine beta-synthase expression. Endocrinology. 2015;156(6):2288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lechuga TJ, Bilg AK, Patel BA, Nguyen NA, Qi QR, Chen DB. Estradiol-17beta stimulates H2 S biosynthesis by ER-dependent CBS and CSE transcription in uterine artery smooth muscle cells in vitro. J Cell Physiol. 2019;234(6):9264–73.

    Article  CAS  PubMed  Google Scholar 

  18. Sheibani L, Lechuga TJ, Zhang H, Hameed A, Wing DA, Kumar S, et al. Augmented H2S production via cystathionine-beta-synthase upregulation plays a role in pregnancy-associated uterine vasodilation†. Biol Reprod. 2017;96(3):664–72.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ma Q, Zhao J, Cao W, Liu J, Cui S. Estradiol decreases taurine level by reducing cysteine sulfinic acid decarboxylase via the estrogen receptor-alpha in female mice liver. Am J Physiol Gastrointest Liver Physiol. 2015;308(4):G277–86.

    Article  CAS  PubMed  Google Scholar 

  20. Guzman MA, et al. Cystathionine beta-synthase is essential for female reproductive function. Hum Mol Genet. 2006;15(21):3168–76.

    Article  CAS  PubMed  Google Scholar 

  21. Maclean KN, Sikora J, Kožich V, Jiang H, Greiner LS, Kraus E, et al. Cystathionine beta-synthase null homocystinuric mice fail to exhibit altered hemostasis or lowering of plasma homocysteine in response to betaine treatment. Mol Genet Metab. 2010;101(2–3):163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hadi T, Bardou M, Mace G, Sicard P, Wendremaire M, Barrichon M, et al. Glutathione prevents preterm parturition and fetal death by targeting macrophage-induced reactive oxygen species production in the myometrium. FASEB J. 2015;29(6):2653–66.

    Article  CAS  PubMed  Google Scholar 

  23. Sidhu R, Singh M, Samir G, Carson RJ. L-cysteine and sodium hydrosulphide inhibit spontaneous contractility in isolated pregnant rat uterine strips in vitro. Pharmacol Toxicol. 2001;88(4):198–203.

    Article  CAS  PubMed  Google Scholar 

  24. You XJ, Xu C, Lu JQ, Zhu XY, Gao L, Cui XR, et al. Expression of cystathionine beta-synthase and cystathionine gamma-lyase in human pregnant myometrium and their roles in the control of uterine contractility. PLoS One. 2011;6(8):e23788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramnarayanan S, Kyathanahalli C, Ingles J, Park-York M, Jeyasuria P, Condon JC. The unfolded protein response regulates uterine myocyte antioxidant responsiveness during pregnancy. Biol Reprod. 2016;95(6):120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Maclean KN, Sikora J, Kožich V, Jiang H, Greiner LS, Kraus E, et al. A novel transgenic mouse model of CBS-deficient homocystinuria does not incur hepatic steatosis or fibrosis and exhibits a hypercoagulative phenotype that is ameliorated by betaine treatment. Mol Genet Metab. 2010;101(2–3):153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322(5901):587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang H, Hurt KJ, Breen K, Stabler SP, Allen RH, Orlicky DJ, et al. Sex-specific dysregulation of cysteine oxidation and the methionine and folate cycles in female cystathionine gamma-lyase null mice: a serendipitous model of the methylfolate trap. Biol Open. 2015;4(9):1154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vyas V, Guerra DD, Bok R, Powell T, Jansson T, Hurt KJ. Adiponectin links maternal metabolism to uterine contractility. FASEB J. 2019;33(12):14588–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Monga M, Ku CY, Dodge K, Sanborn BM. Oxytocin-stimulated responses in a pregnant human immortalized myometrial cell line. Biol Reprod. 1996;55(2):427–32.

    Article  CAS  PubMed  Google Scholar 

  31. Amedee T, Mironneau C, Mironneau J. Isolation and contractile responses of single pregnant rat myometrial cells in short-term primary culture and the effects of pharmacological and electrical stimuli. Br J Pharmacol. 1986;88(4):873–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hurt KJ, Sezen SF, Lagoda GF, Musicki B, Rameau GA, Snyder SH, et al. Cyclic AMP-dependent phosphorylation of neuronal nitric oxide synthase mediates penile erection. Proc Natl Acad Sci U S A. 2012;109(41):16624–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mosher AA, Rainey KJ, Bolstad SS, Lye SJ, Mitchell BF, Olson DM, et al. Development and validation of primary human myometrial cell culture models to study pregnancy and labour. BMC Pregnancy Childbirth. 2013;13(Suppl 1):S7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guerra DD, Bok R, Cari EL, Nicholas C, Orlicky DJ, Johnson J, et al. Effect of neuronal nitric oxide synthase serine-1412 phosphorylation on hypothalamic-pituitary-ovarian function and leptin response. Biol Reprod. 2020;102:1281–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang M, Guo Z, Wang S. Cystathionine gamma-lyase expression is regulated by exogenous hydrogen peroxide in the mammalian cells. Gene Expr. 2012;15(5–6):235–41.

    Article  PubMed  CAS  Google Scholar 

  36. Kim J, Hong SJ, Park JH, Park SY, Kim SW, Cho EY, et al. Expression of cystathionine beta-synthase is downregulated in hepatocellular carcinoma and associated with poor prognosis. Oncol Rep. 2009;21(6):1449–54.

    Article  CAS  PubMed  Google Scholar 

  37. Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW. Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett. 2006;28(19):1601–13.

    Article  CAS  PubMed  Google Scholar 

  38. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013;3(3):71–85.

    PubMed  PubMed Central  Google Scholar 

  39. Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J. 1982;206(2):267–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001;20(21):6008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu T-X, Guo X, Wang G, Gao L, He P, Xia Y, et al. MiR133b is involved in endogenous hydrogen sulfide suppression of sFlt-1 production in human placenta. Placenta. 2017;52:33–40.

    Article  CAS  PubMed  Google Scholar 

  42. Chen D-B, Feng L, Hodges JK, Lechuga TJ, Zhang H. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis†. Biol Reprod. 2017;97(3):478–89.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guerra DD, Bok R, Hurt KJ. Cyclic nucleotides and myometrial contractility. Curr Opin Physio. 2020;13:102–7.

    Article  Google Scholar 

  44. Zenclussen ML, et al. Hormonal fluctuations during the estrous cycle modulate heme oxygenase-1 expression in the uterus. Front Endocrinol (Lausanne). 2014;5:32.

    Article  Google Scholar 

  45. Malaivijitnond S, Chansri K, Kijkuokul P, Urasopon N, Cherdshewasart W. Using vaginal cytology to assess the estrogenic activity of phytoestrogen-rich herb. J Ethnopharmacol. 2006;107(3):354–60.

    Article  PubMed  Google Scholar 

  46. Lambertini E, Penolazzi L, Angelozzi M, Grassi F, Gambari L, Lisignoli G, et al. The expression of cystathionine gamma-lyase is regulated by estrogen receptor alpha in human osteoblasts. Oncotarget. 2017;8(60):101686–96.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Srilatha B, Hu L, Adaikan GP, Moore PK. Initial characterization of hydrogen sulfide effects in female sexual function. J Sex Med. 2009;6(7):1875–84.

    Article  CAS  PubMed  Google Scholar 

  48. Kabil O, Vitvitsky V, Xie P, Banerjee R. The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal. 2011;15(2):363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Markand S, Tawfik A, Ha Y, Gnana-Prakasam J, Sonne S, Ganapathy V, et al. Cystathionine beta synthase expression in mouse retina. Curr Eye Res. 2013;38(5):597–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piccinato CA, Rosa GJM, N’Jai AU, Jefcoate CR, Wiltbank MC. Estradiol and progesterone exhibit similar patterns of hepatic gene expression regulation in the bovine model. PLoS One. 2013;8(9):e73552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu H, et al. Glutathione metabolism during aging and in Alzheimer disease. Ann N Y Acad Sci. 2004;1019:346–9.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu X, Tang Z, Cong B, du J, Wang C, Wang L, et al. Estrogens increase cystathionine-gamma-lyase expression and decrease inflammation and oxidative stress in the myocardium of ovariectomized rats. Menopause. 2013;20(10):1084–91.

    Article  PubMed  Google Scholar 

  53. Wang L, Tang ZP, Zhao W, Cong BH, Lu JQ, Tang XL, et al. MiR-22/Sp-1 links estrogens with the up-regulation of cystathionine gamma-lyase in myocardium, which contributes to estrogenic cardioprotection against oxidative stress. Endocrinology. 2015;156(6):2124–37.

    Article  PubMed  Google Scholar 

  54. Walmer DK, Wrona MA, Hughes CL, Nelson KG. Lactoferrin expression in the mouse reproductive tract during the natural estrous cycle: correlation with circulating estradiol and progesterone. Endocrinology. 1992;131(3):1458–66.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang L, Fishman MC, Huang PL. Estrogen mediates the protective effects of pregnancy and chorionic gonadotropin in a mouse model of vascular injury. Arterioscler Thromb Vasc Biol. 1999;19(9):2059–65.

    Article  CAS  PubMed  Google Scholar 

  56. Porter AC et al. Maternal amino acid profiles to distinguish constitutionally small versus growth-restricted fetuses defined by Doppler ultrasound: a pilot study. Am J Perinatol, 2020.

  57. Yin X, Gao R, Geng Y, Chen X, Liu X, Mu X, et al. Autophagy regulates abnormal placentation induced by folate deficiency in mice. Mol Hum Reprod. 2019;25(6):305–19.

    Article  CAS  PubMed  Google Scholar 

  58. Amin AF, Shaaban OM, Bediawy MA. N-acetyl cysteine for treatment of recurrent unexplained pregnancy loss. Reprod BioMed Online. 2008;17(5):722–6.

    Article  CAS  PubMed  Google Scholar 

  59. Pang K, Park J, Ahn SG, Lee J, Park Y, Ooshima A, et al. RNF208, an estrogen-inducible E3 ligase, targets soluble vimentin to suppress metastasis in triple-negative breast cancers. Nat Commun. 2019;10(1):5805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manavathi B, Samanthapudi VS, Gajulapalli VN. Estrogen receptor coregulators and pioneer factors: the orchestrators of mammary gland cell fate and development. Front Cell Dev Biol. 2014;2:34.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rettberg JR, Yao J, Brinton RD. Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol. 2014;35(1):8–30.

    Article  CAS  PubMed  Google Scholar 

  62. Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M. Cystathionine gamma-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem. 2010;285(34):26358–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sekhar RV, Patel SG, Guthikonda AP, Reid M, Balasubramanyam A, Taffet GE, et al. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am J Clin Nutr. 2011;94(3):847–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Broniowska KA, Diers AR, Hogg N. S-nitrosoglutathione. Biochim Biophys Acta. 2013;1830(5):3173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther (Seoul). 2018;26(3):225–41.

    Article  CAS  Google Scholar 

  66. Lim JKM, Delaidelli A, Minaker SW, Zhang HF, Colovic M, Yang H, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci U S A. 2019;116(19):9433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kobayashi S, Sato M, Kasakoshi T, Tsutsui T, Sugimoto M, Osaki M, et al. Cystathionine is a novel substrate of cystine/glutamate transporter: implications for immune function. J Biol Chem. 2015;290(14):8778–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hamelet J, Demuth K, Paul JL, Delabar JM, Janel N. Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice. J Hepatol. 2007;46(1):151–9.

    Article  CAS  PubMed  Google Scholar 

  69. Maclean KN, Janosík M, Kraus E, Kozich V, Allen RH, Raab BK, et al. Cystathionine beta-synthase is coordinately regulated with proliferation through a redox-sensitive mechanism in cultured human cells and Saccharomyces cerevisiae. J Cell Physiol. 2002;192(1):81–92.

    Article  CAS  PubMed  Google Scholar 

  70. Maclean KN, Greiner LS, Evans JR, Sood SK, Lhotak S, Markham NE, et al. Cystathionine protects against endoplasmic reticulum stress-induced lipid accumulation, tissue injury, and apoptotic cell death. J Biol Chem. 2012;287(38):31994–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghibelli L, Fanelli C, Rotilio G, Lafavia E, Coppola S, Colussi C, et al. Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J. 1998;12(6):479–86.

    Article  CAS  PubMed  Google Scholar 

  72. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P, et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci. 2012;109(23):9161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem. 2009;284(33):22457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aggelidou E, Hillhouse EW, Grammatopoulos DK. Up-regulation of nitric oxide synthase and modulation of the guanylate cyclase activity by corticotropin-releasing hormone but not urocortin II or urocortin III in cultured human pregnant myometrial cells. Proc Natl Acad Sci. 2002;99(5):3300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Berenyiova A, Grman M, Mijuskovic A, Stasko A, Misak A, Nagy P, et al. The reaction products of sulfide and S-nitrosoglutathione are potent vasorelaxants. Nitric Oxide. 2015;46:123–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Brian W. Wakefield for technical assistance.

Funding

This work was supported by a Perinatology-Neonatology T32 training grant (5T32HD007186-37, to DDG), a Basil O’Connor Starter Scholar Award (5-FY12-57), and a Society for Maternal Fetal Medicine/American Association of Obstetricians and Gynecologists Foundation Scholar Award (to KJH).

KNM is supported by the William R. Hummel Homocystinuria Research Fund and the Ehst-Hummel-Kaufmann Family Endowed Chair in Inherited Metabolic Disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Joseph Hurt.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The University of Colorado School of Medicine Institutional Animal Care and Use Committee approved all animal experiments (Protocol #90).

Consent for Publications

All authors consent to the publication of this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Summary sentence: Estrogen upregulates cystathionine-β-synthase (CBS) and downregulates cystathionine-γ-lyase (CSE) and cysteinesulfinic acid decarboxylase (CSAD) in a myometrium-specific manner suggesting local regulation of uterine cysteine metabolism.

Electronic Supplementary Material

ESM 1

Validation of CBS and CSE antibodies. Immunoblots of liver lysates confirming antibody specificity. CSE KO: CSE-null. CBS KO: CBS-null. GAPDH: loading control. (PPTX 56 kb)

ESM 2

Isolated mouse primary uterine smooth muscle cells exhibit expected morphology and immunomarkers. We assessed expression of CBS and CSE and various markers in uterine smooth muscle cells and control cell lines: α-SMA (myocytes), vimentin (fibroblasts), cytokeratin (epithelial cells), VWF (endothelial cells), CBS, and CSE. Control cells were: PHM1–41 (human myometrial myocytes), MS1 (mouse pancreatic islet endothelium), Ishikawa (human endometrial adenocarcinoma), and HeLa cells (cytokeratin only). Primary myometrial cells and PHM1–41 cells do not express significant cytokeratin, VWF, or vimentin. They exhibit fusiform morphology characteristic of myocytes. Upper left insets: primary antibody excluded (negative controls). Blue channel: DAPI. Scale bars: 20 μm. (PPTX 1206 kb)

ESM 3

Estrogen induces uterine hypertrophy and alters vaginal lavage cytology in ovariectomized mice. A. E2 increases uterine volume (alone or in combination with P4), while P4 slightly reduces volume. Scale bars: 5 mm. B. E2 and P4 increase the relative abundance of cornified cells and leukocytes, respectively. Scale bars: 100 μm. (PPTX 1367 kb)

ESM 4

Estrogen and progesterone effects on CBS and CSE protein expression do not vary by uterine location in ovariectomized mice. A. Upper and lower uterus CBS and CSE respond identically to E2 and P4. GAPDH: loading control. B-C. Quantification of A. n.s.: not significant by two-way ANOVA (lower vs. upper uterus). N: mice. (PPTX 156 kb)

ESM 5

Estrogen and progesterone do not affect vaginal or cervical CBS or CSE protein levels. A. E2 and P4 do not affect CBS or CSE protein levels in ovariectomized mouse cervix or vagina. Veh: sesame oil vehicle. β-actin: loading control. B-C. Quantification of A. n.s.: not significant by Kruskal-Wallis test. N: mice. (PPTX 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, D.D., Bok, R., Breen, K. et al. Estrogen Regulates Local Cysteine Metabolism in Mouse Myometrium. Reprod. Sci. 28, 79–90 (2021). https://doi.org/10.1007/s43032-020-00284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00284-6

Keywords

Navigation