Skip to main content

Advertisement

Log in

Development and Validation of Hormonal Impact of a Mouse Xenograft Model for Human Uterine Leiomyoma

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Multiple in vivo animal models for uterine leiomyoma do not adequately represent human disease based on etiology, molecular phenotype, or limited fixed life span. Our objective was to develop a xenograft model with sustained growth, by transplanting a well-established actively growing three-dimensional (3D) cell culture of human leiomyoma and myometrium in NOD/SCID ovariectomized female mice. We demonstrated continued growth to at least 12 weeks and the overexpression of extracellular matrix (ECM). Further, we confirmed maintenance of hormonal response that is comparable to human disease in situ. Leiomyoma xenografts under hormonal treatment demonstrated 8 to12-fold increase of volume over the xenografts not treated with hormones. Estradiol-treated xenografts were more cellular as compared to progesterone or combination milieu, at the end of 8-week time frame. There was also a non-statistically significant 2–4 mm3 increase in volume between 8-week and 12-week xenografts with higher matrix to cell ratio in 12-week xenografts compared to the 8-week and placebo xenografts. Increased expression of ECM proteins, fibronectin, versican, and collagens, indicated an actively growing cell matrix formation in the xenografts. In conclusion, we have developed and validated a xenograft in vivo model for uterine leiomyoma that shares the genomic and proteomic characteristics with the human surgical specimens of origin and recapitulates the most important features of the human tumors, the aberrant ECM expression that defines the leiomyoma phenotype and gonadal hormone regulation. Using this model, we demonstrated that combination of estradiol and progesterone resulted in increased cellularity and ECM production leading to growth of the xenograft tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stewart EA, Laughlin-Tommaso SK, Catherino WH, Lalitkumar S, Gupta D, Vollenhoven B. Uterine fibroids. Nat Rev Dis Primers. 2016;2:16043.

    Article  PubMed  Google Scholar 

  2. Stewart EA, Cookson CL, Gandolfo RA, Schulze-Rath R. Epidemiology of uterine fibroids: a systematic review. BJOG. 2017;124(10):1501–12.

    Article  CAS  PubMed  Google Scholar 

  3. Marsh EE, Al-Hendy A, Kappus D, Galitsky A, Stewart EA, Kerolous M. Burden, prevalence, and treatment of uterine fibroids: A survey of U.S. women. J Women's Health (Larchmt). 2018;27:1359–67.

    Article  Google Scholar 

  4. McWilliams MM, Chennathukuzhi VM. Recent advances in uterine fibroid etiology. Semin Reprod Med. 2017;35:181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Malik M, Norian J, McCarthy-Keith D, Britten J, Catherino WH. Why leiomyomas are called fibroids: the central role of extracellular matrix in symptomatic women. Semin Reprod Med. 2010;28:169–79.

    Article  PubMed  Google Scholar 

  6. Commandeur AE, Styer AK, Teixeira JM. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth. Hum Reprod Update. 2015;21:593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moravek MB, Bulun SE. Endocrinology of uterine fibroids: steroid hormones, stem cells, and genetic contribution. Curr Opin Obstet Gynecol. 2015;27:276–83.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Styer AK, Rueda BR. The epidemiology and genetics of uterine leiomyoma. Best Pract Res Clin Obstet Gynaecol. 2016;34:3–12.

    Article  PubMed  Google Scholar 

  9. Mehine M, Kaasinen E, Heinonen HR, et al. Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc Natl Acad Sci U S A. 2016;113:1315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fritton K, Borahay MA. New and emerging therapies for uterine fibroids. Semin Reprod Med. 2017;35:549–59.

    Article  CAS  PubMed  Google Scholar 

  11. El Andaloussi A, Chaudhry Z, Al-Hendy A, Ismail N. Uterine fibroids: bridging genomic defects and chronic inflammation. Semin Reprod Med. 2017;35:494–8.

    Article  PubMed  CAS  Google Scholar 

  12. Rafique S, Segars JH, Leppert PC. Mechanical signaling and extracellular matrix in uterine fibroids. Semin Reprod Med. 2017;35:487–93.

    Article  PubMed  Google Scholar 

  13. Elkafas H, Qiwei Y, Al-Hendy A. Origin of uterine fibroids: conversion of myometrial stem cells to tumor-initiating cells. Semin Reprod Med. 2017;35:481–6.

    Article  PubMed  Google Scholar 

  14. Dvorská D, Braný D, Danková Z, Halašová E, Višňovský J. Molecular and clinical attributes of uterine leiomyomas. Tumor Biol. 2017;39. https://doi.org/10.1177/1010428317710226.

  15. Pavone D, Clemenza S, Sorbi F, Fambrini M, Petraglia F. Epidemiology and risk factors of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2018;46:3–11.

    Article  PubMed  Google Scholar 

  16. Malik M, Catherino WH. Novel method to characterize primary cultures of leiomyoma and myometrium with the use of confirmatory biomarker gene arrays. Fertil Steril. 2007;87:1166–72.

    Article  CAS  PubMed  Google Scholar 

  17. Malik M, Webb J, Catherino WH. Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells. Clin Endocrinol. 2008;69:462–70.

    Article  CAS  Google Scholar 

  18. Malik M, Catherino WH. Development and validation of a three-dimensional in vitro model for uterine leiomyoma and patient-matched myometrium. Fertil Steril. 2012;97:1287–93.

    Article  PubMed  Google Scholar 

  19. Markowski DN, Holzmann C, Bullerdiek J. Genetic alterations in uterine fibroids - a new direction for pharmacological intervention? Expert Opin Ther Targets. 2015;19:1485–94.

    Article  CAS  PubMed  Google Scholar 

  20. Al-Hendy A, Laknaur A, Diamond MP, Ismail N, Boyer TG, Halder SK. Silencing Med12 gene reduces proliferation of human leiomyoma cells mediated via Wnt/β-catenin signaling pathway. Endocrinology. 2017;158:592–603.

    CAS  PubMed  Google Scholar 

  21. Yeung RS, Xiao GH, Everitt JI, Jin F, Walker CL. Allelic loss at the tuberous sclerosis 2 locus in spontaneous tumors in the Eker rat. Mol Carcinog. 1995;14:28–36.

    Article  CAS  PubMed  Google Scholar 

  22. Everitt JI, Wolf DC, Howe SR, Goldsworthy TL, Walker C. Rodent model of reproductive tract leiomyomata. Clinical and pathological features. Am J Pathol. 1995;146:1556–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Howe SR, Gottardis MM, Everitt JI, Goldsworthy TL, Wolf DC, Walker C. Rodent model of reproductive tract leiomyomata. Establishment and characterization of tumor-derived cell lines. Am J Pathol. 1995;146:1568–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Walker CL, Hunter D, Everitt JI. Uterine leiomyoma in the Eker rat: a unique model for important diseases of women. Genes Chromosom Cancer. 2003;38:349–56.

    Article  CAS  PubMed  Google Scholar 

  25. Howe SR, Gottardis MM, Everitt JI, Walker C. Estrogen stimulation and tamoxifen inhibition of leiomyoma cell growth in vitro and in vivo. Endocrinology. 1995;136:4996–5003.

    Article  CAS  PubMed  Google Scholar 

  26. Cook JD, Walker CL. The Eker rat: establishing a genetic paradigm linking renal cell carcinoma and uterine leiomyoma. Curr Mol Med. 2004;4:813–24.

    Article  CAS  PubMed  Google Scholar 

  27. Miyake A, Takeda T, Isobe A, Wakabayashi A, Nishimoto F, Morishige K, et al. Repressive effect of the phytoestrogen genistein on estradiol-induced uterine leiomyoma cell proliferation. Gynecol Endocrinol. 2009;25:403–9.

    Article  CAS  PubMed  Google Scholar 

  28. Halder SK, Sharan C, Al-Hendy A. 1,25-dihydroxyvitamin D3 treatment shrinks uterine leiomyoma tumors in the Eker rat model. Biol Reprod. 2012;86:116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Goldberg AA, Joung KB, Mansuri A, Kang Y, Echavarria R, Nikolajev L, et al. Oncogenic effects of urotensin-II in cells lacking tuberous sclerosis complex-2. Oncotarget. 2016;7:61152–65.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen HY, Huang TC, Lin LC, Shieh TM, Wu CH, Wang KL, et al. Fucoidan inhibits the proliferation of leiomyoma cells and decreases extracellular matrix-associated protein expression. Cell Physiol Biochem. 2018;49:1970–86.

    Article  CAS  PubMed  Google Scholar 

  31. Prizant H, Sen A, Light A, Cho SN, DeMayo F, Lydon JP, et al. Uterine-specific loss of Tsc2 leads to myometrial tumors in both the uterus and lungs. Mol Endocrinol. 2013;27:1403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mäkinen N, Vahteristo P, Kämpjärvi K, Arola J, Bützow R, Aaltonen LA. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet. 2013;21:1300–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mäkinen N, Vahteristo P, Bützow R, Sjöberg J, Aaltonen LA. Exomic landscape of MED12 mutation-negative and -positive uterine leiomyomas. Int J Cancer. 2014;134:1008–12.

    Article  PubMed  CAS  Google Scholar 

  34. Halder SK, Laknaur A, Miller J, Layman LC, Diamond M, Al-Hendy A. Novel MED12 gene somatic mutations in women from the southern United States with symptomatic uterine fibroids. Mol Gen Genomics. 2015;290:505–11.

    Article  CAS  Google Scholar 

  35. Lee M, Cheon K, Chae B, et al. Analysis of MED12 mutation in multiple uterine leiomyomas in south Korean patients. Int J Med Sci. 2018;15:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mittal P, Shin YH, Yatsenko SA, Castro CA, Surti U, Rajkovic A. Med12 gain-of-function mutation causes leiomyomas and genomic instability. J Clin Invest. 2015;125:3280–4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang H, Shen Q, Ye LH, Ye J. MED12 mutations in human diseases. Protein Cell. 2013;4:643–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Markowski DN, Huhle S, Nimzyk R, Stenman G, Löning T, Bullerdiek J. MED12 mutations occurring in benign and malignant mammalian smooth muscle tumors. Genes Chromosom Cancer. 2013;52:297–304.

    Article  CAS  PubMed  Google Scholar 

  39. Schwetye KE, Pfeifer JD, Duncavage EJ. MED12 exon 2 mutations in uterine and extrauterine smooth muscle tumors. Hum Pathol. 2014;45:65–70.

    Article  CAS  PubMed  Google Scholar 

  40. Osinovskaya NS, Malysheva OV, Shved NY, Ivashchenko TE, Sultanov IY, Efimova OA, et al. Frequency and spectrum of MED12 exon 2 mutations in multiple versus solitary uterine leiomyomas from Russian patients. Int J Gynecol Pathol. 2016;35:509–15.

    Article  CAS  PubMed  Google Scholar 

  41. Sadeghi S, Khorrami M, Amin-Beidokhti M, et al. The study of MED12 gene mutations in uterine leiomyomas from Iranian patients. Tumour Biol. 2016;37:1567–71.

    Article  CAS  PubMed  Google Scholar 

  42. Park MJ, Shen H, Kim NH, et al. Mediator kinase disruption in med12-mutant uterine fibroids from Hispanic women of South Texas. J Clin Endocrinol Metab. 2018;103:4283–92.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Porter KB, Tsibris JC, Nicosia SV, et al. Estrogen-induced guinea pig model for uterine leiomyomas: do the ovaries protect? Biol Reprod. 1995;52:824–32.

    Article  CAS  PubMed  Google Scholar 

  44. Tsibris J. The guinea pig model for uterine leiomyomata: gene-hormone interaction? Fertil Steril. 2004;82:988–9.

    Article  PubMed  Google Scholar 

  45. Mozzachio K, Linder K, Dixon D. Uterine smooth muscle tumors in potbellied pigs (Sus scrofa) resemble human fibroids: a potential animal model. Toxicol Pathol. 2004;32:402–7.

    Article  PubMed  Google Scholar 

  46. Machado SA, Bahr JM, Hales DB, Braundmeier AG, Quade BJ, Nowak RA. Validation of the aging hen (Gallus gallus domesticus) as an animal model for uterine leiomyomas. Biol Reprod. 2012;87:86.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sousa WB, Garcia JB, Nogueira Neto J, Furtado PG, Anjos JA. Xenotransplantation of uterine leiomyoma in Wistar rats: a pilot study. Eur J Obstet Gynecol Reprod Biol. 2015;190:71–5.

    Article  PubMed  Google Scholar 

  48. Hassan MH, Eyzaguirre E, Arafa HM, Hamada FM, Salama SA, Al-Hendy A. Memy I: a novel murine model for uterine leiomyoma using adenovirus-enhanced human fibroid explants in severe combined immune deficiency mice. Am J Obstet Gynecol. 2008;199:156.e1–8.

    Article  CAS  Google Scholar 

  49. Suo G, Sadarangani A, Lamarca B, Cowan B, Wang JY. Murine xenograft model for human uterine fibroids: an in vivo imaging approach. Reprod Sci. 2009;16:827–42.

    Article  CAS  PubMed  Google Scholar 

  50. Tsuiji K, Takeda T, Li B, Kondo A, Ito M, Yaegashi N. Establishment of a novel xenograft model for human uterine leiomyoma in immunodeficient mice. Tohoku J Exp Med. 2010;222:55–61.

    Article  PubMed  Google Scholar 

  51. Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151:2433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Drosch M, Bullerdiek J, Zollner TM, Prinz F, Koch M, Schmidt N. A novel mouse model that closely mimics human uterine leiomyomas. Fertil Steril. 2013;99:927–35.

    Article  CAS  PubMed  Google Scholar 

  53. Wang G, Ishikawa H, Sone K, Kobayashi T, Kim JJ, Kurita T, et al. Nonobese diabetic/severe combined immunodeficient murine xenograft model for human uterine leiomyoma. Fertil Steril. 2014;101:1485–92.

    Article  CAS  PubMed  Google Scholar 

  54. Qiang W, Liu Z, Serna VA, Druschitz SA, Liu Y, Espona-Fiedler M, et al. Down-regulation of miR-29b is essential for pathogenesis of uterine leiomyoma. Endocrinology. 2014;155:663–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fritsch M, Schmidt N, Gröticke I, et al. Application of a patient derived xenograft model for predicative study of uterine fibroid disease. PLoS One. 2015;10:e0142429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Koohestani F, Qiang W, MacNeill AL, Druschitz SA, Serna VA, Adur M, et al. Halofuginone suppresses growth of human uterine leiomyoma cells in a mouse xenograft model. Hum Reprod. 2016;31:1540–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. García-Pascual CM, Ferrero H, Juarez I, et al. Evaluation of the antiproliferative, proapoptotic, and antiangiogenic effects of a double-stranded RNA mimic complexed with polycations in an experimental mouse model of leiomyoma. Fertil Steril. 2016;105:529–38.

    Article  PubMed  CAS  Google Scholar 

  58. Serna VA, Kurita T. Patient-derived xenograft model for uterine leiomyoma by sub-renal capsule grafting. J Biol Methods. 2018;5. pii: e91.

  59. Suzuki Y, Ii M, Saito T, et al. Establishment of a novel mouse xenograft model of human uterine leiomyoma. Sci Rep. 2018;8:8872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Malik M, Britten J, Catherino WH. A 3D culture system of human immortalized myometrial cells. Bio-protocols. 2016;6:120 www.bioprotocols.org/e1970.

    Google Scholar 

  61. Malik M, Britten JL, Segars J, Catherino WH. Leiomyoma cells in 3-dimensional cultures demonstrate an attenuated response to fasudil, a rho-kinase inhibitor, as compared to 2-dimensional cultures. Reprod Sci. 2014;21:1126–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Malik M, Britten J, Cox J, Patel A, Catherino WH. Gonadotropin-releasing hormone analogues inhibit leiomyoma extracellular matrix despite presence of gonadal hormones. Fertil Steril. 2016;105:214–24.

    Article  CAS  PubMed  Google Scholar 

  63. Britten JL, Malik M, Lewis TD, Catherino WH. Ulipristal acetate mediates decreased proteoglycan expression through regulation of nuclear factor of activated T-cells (NFAT5). Reprod Sci. 2019;26:184–97.

    Article  CAS  PubMed  Google Scholar 

  64. Cox J, Malik M, Britten J, Lewis T, Catherino WH. Ulipristal acetate and extracellular matrix production in human leiomyomas. In vivo: a laboratory analysis of a randomized placebo controlled trial. Reprod Sci. 2018;25:198–206.

    Article  CAS  PubMed  Google Scholar 

  65. Sápi J, Kovács L, Drexler DA, Kocsis P, Gajári D, Sápi Z. Tumor volume estimation and quasi-continuous administration for most effective Bevacizumab therapy. PLoS One. 2015;10:e0142190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54.

    Article  CAS  PubMed  Google Scholar 

  67. Reis FM, Bloise E, Ortiga-Carvalho TM. Hormones and pathogenesis of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2016;34:13–24.

    Article  PubMed  Google Scholar 

  68. Lewis TD, Malik M, Britten J, San Pablo AM, Catherino WH. A comprehensive review of the pharmacologic management of uterine leiomyoma. Biomed Res Int. 2018;2018:2414609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010;26:397–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang JP, Hielscher A. Fibronectin: how its aberrant expression in tumors may improve therapeutic targeting. J Cancer. 2017;8:674–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shimomura Y, Matsuo H, Samoto T, Maruo T. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab. 1998;83:2192–8.

    CAS  PubMed  Google Scholar 

  72. Matsuo H, Kurachi O, Shimomura Y, Samoto T, Maruo T. Molecular bases for the actions of ovarian sex steroids in the regulation of proliferation and apoptosis of human uterine leiomyoma. Oncology. 1999;57(Suppl 2):49–58.

    Article  CAS  PubMed  Google Scholar 

  73. Maruo T, Matsuo H, Shimomura Y, Kurachi O, Gao Z, Nakago S, et al. Effects of progesterone on growth factor expression in human uterine leiomyoma. Steroids. 2003;68:817–24.

    Article  CAS  PubMed  Google Scholar 

  74. Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, et al. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci. 2009;16:1153–64.

    Article  CAS  PubMed  Google Scholar 

  75. Ohara N. A putative role of versican in uterine leiomyomas. Clin Exp Obstet Gynecol. 2009;36:74–5.

    CAS  PubMed  Google Scholar 

  76. Kinsella MG, Bressler SL, Wight TN. The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit Rev Eukaryot Gene Expr. 2004;14:203–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the expert assistance of the animal facilities (IACUC), histopathology, and imaging labs (BIC) at the Uniformed Services University. This research was supported by the Military Women’s Health Research grant at the Uniformed Services University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Catherino.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Uniformed Services University of the Health Sciences, Department of Obstetrics and Gynecology.

The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of Defense, or the United States Government.

Electronic supplementary material

ESM 1

(DOCX 3237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, M., Britten, J. & Catherino, W.H. Development and Validation of Hormonal Impact of a Mouse Xenograft Model for Human Uterine Leiomyoma. Reprod. Sci. 27, 1304–1317 (2020). https://doi.org/10.1007/s43032-019-00123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00123-3

Keywords

Navigation