Skip to main content
Log in

From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas

  • Review
  • Published:
aBIOTECH Aims and scope Submit manuscript

Abstract

In the last years, tremendous progress has been achieved in the field of gene editing in plants. By the induction of single site-specific double-strand breaks (DSBs), the knockout of genes by non-homologous end joining has become routine in many plant species. Recently, the efficiency of inducing pre-planned mutations by homologous recombination has also been improved considerably. However, very little effort has been undertaken until now to achieve more complex changes in plant genomes by the simultaneous induction of several DSBs. Several reports have been published on the efficient induction of deletions. However, the induction of intrachromosomal inversions and interchromosomal recombination by the use of CRISPR/Cas has only recently been reported. In this review, we want to sum up these results and put them into context with regards to what is known about natural chromosome rearrangements in plants. Moreover, we review the recent progress in CRISPR/Cas-based mammalian chromosomal rearrangements, which might be inspiring for plant biologists. In the long run, the controlled restructuring of plant genomes should enable us to link or break linkage of traits at will, thus defining a new area of plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeysinghe SS, Chuzhanova N, Cooper D (2006) Gross deletions and translocations in human genetic disease. In: Volff J-N (ed) Genome and disease, vol 1. Karger, Basel, pp 17–34 (Genome Dyn)

    Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Sung G-H, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290

    CAS  PubMed  Google Scholar 

  • Badaeva ED, Dedkova OS, Gay G, Pukhalskyi VA, Zelenin AV, Bernard S, Bernard M (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome 50:907–926

    CAS  PubMed  Google Scholar 

  • Barbouti A, Stankiewicz P, Nusbaum C, Cuomo C, Cook A, Höglund M, Johansson B, Hagemeijer A, Park S-S, Mitelman F, Lupski JR, Fioretos T (2004) The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic, low-copy repeats. Am J Hum Genet 74:1–10

    CAS  PubMed  Google Scholar 

  • Black SJ, Kashkina E, Kent T, Pomerantz RT (2016) DNA polymerase θ: a unique multifunctional end-joining machine. Genes (Basel) 7:67

    Google Scholar 

  • Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bondeson ML, Dahl N, Malmgren H, Kleijer WJ, Tönnesen T, Carlberg BM, Pettersson U (1995) Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet 4:615–621

    CAS  PubMed  Google Scholar 

  • Buchholz F, Refaeli Y, Trumpp A, Bishop JM (2000) Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep 1:133–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bunting SF, Nussenzweig A (2013) End-joining, translocations and cancer. Nat Rev Cancer 13:443–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canver MC, Bauer DE, Dass A, Yien YY, Chung J, Masuda T, Maeda T, Paw BH, Orkin SH (2014) Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem 289:21312–21324

    PubMed  PubMed Central  Google Scholar 

  • Čermák T, Curtin SJ, Gil-Humanes J, Čegan R, Kono TJY, Konečná E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, Voytas DF (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217

    PubMed  PubMed Central  Google Scholar 

  • Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18:495–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong T-C, Blasco RB, Chiarle R (2018) The CRISPR/Cas9 system as a tool to engineer chromosomal translocation in vivo. In: Zhang Y (ed) Chromosome translocation. Advances in experimental medicine and biology, vol 1044. Springer, Singapore, pp 39–48

    Google Scholar 

  • Choi K (2017) Advances towards controlling meiotic recombination for plant breeding. Mol Cells 40:814–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi PS, Meyerson M (2014) Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 5:3728

    CAS  PubMed  Google Scholar 

  • Collins EC, Pannell R, Simpson EM, Forster A, Rabbitts TH (2000) Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Rep 1:127–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das OP, Levi-Minzi S, Koury M, Benner M, Messing J (1990) A somatic gene rearrangement contributing to genetic diversity in maize. Proc Natl Acad Sci USA 87:7809–7813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davisson MT, Schmidt C, Akeson EC (1990) Segmental trisomy of murine chromosome 16: a new model system for studying down syndrome. Prog Clin Biol Res 360:263–280

    CAS  PubMed  Google Scholar 

  • Drouaud J, Camilleri C, Bourguignon P-Y, Canaguier A, Bérard A, Vezon D, Giancola S, Brunel D, Colot V, Prum B, Quesneville H, Mézard C (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Res 16:106–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durr J, Papareddy R, Nakajima K, Gutierrez-Marcos J (2018) Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9. Sci Rep 8:4443

    PubMed  PubMed Central  Google Scholar 

  • Dutrillaux B, Sabatier L, Al Achkar W, Muleris M, Aurias A, Couturier J, Dutrillaux AM, Gerbault-Seureau M, Hoffschir F, Lamoliatte E (1986) Radiation induced inversions in human somatic cells. Ann Genet 29:189–194

    CAS  PubMed  Google Scholar 

  • Elder JF, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320

    CAS  PubMed  Google Scholar 

  • Fang Z, Pyhäjärvi T, Weber AL, Dawe RK, Glaubitz JC, González JDJS, Ross-Ibarra C, Doebley J, Morrell PL, Ross-Ibarra J (2012) Megabase-scale inversion polymorphism in the wild ancestor of maize. Genetics 191:883–894

    PubMed  PubMed Central  Google Scholar 

  • Filler Hayut S, Melamed Bessudo C, Levy AA (2017) Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat Commun 8:15605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fransz P, Linc G, Lee C-R, Aflitos SA, Lasky JR, Toomajian C, Ali H, Peters J, van Dam P, Ji X, Kuzak M, Gerats T, Schubert I, Schneeberger K, Colot V, Martienssen R, Koornneef M, Nordborg M, Juenger TE, de Jong H, Schranz ME (2016) Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana. Plant J 88:159–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110

    CAS  PubMed  Google Scholar 

  • Ghezraoui H, Piganeau M, Renouf B, Renaud J-B, Sallmyr A, Ruis B, Oh S, Tomkinson AE, Hendrickson EA, Giovannangeli C, Jasin M, Brunet E (2014) Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell 55:829–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mézard C (2011) Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet 7:e1002354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray YH (2000) It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet 16:461–468

    CAS  PubMed  Google Scholar 

  • Guo T, Feng Y-L, Xiao J-J, Liu Q, Sun X-N, Xiang J-F, Kong N, Liu S-C, Chen G-Q, Wang Y, Dong M-M, Cai Z, Lin H, Cai X-J, Xie A-Y (2018) Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol 19:170

    PubMed  PubMed Central  Google Scholar 

  • Hu Y, Chen Z, Zhuang C, Huang J (2017) Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration. Plant J 90:954–965

    CAS  PubMed  Google Scholar 

  • Huang T-K, Puchta H (2019) CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. Plant Cell Rep 38:443–453

    CAS  PubMed  Google Scholar 

  • Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C, Randhawa R, Kulkarni T, Yang Z, McAllister G, Russ C, Reece-Hoyes J, Forrester W, Hoffman GR, Dolmetsch R, Kaykas A (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24:939–946

    CAS  PubMed  Google Scholar 

  • Inaki K, Liu ET (2012) Structural mutations in cancer: mechanistic and functional insights. Trends Genet 28:550–559

    CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation. Genetics 173:419–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnaswamy L, Zhang J, Peterson T (2008) Reversed end Ds element: a novel tool for chromosome engineering in Arabidopsis. Plant Mol Biol 68:399–411

    CAS  PubMed  Google Scholar 

  • Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H (2018) The CRISPR/Cas revolution continues: from efficient gene editing for crop breeding to plant synthetic biology. J Integr Plant Biol 60:1127–1153

    CAS  PubMed  Google Scholar 

  • Lagutina IV, Valentine V, Picchione F, Harwood F, Valentine MB, Villarejo-Balcells B, Carvajal JJ, Grosveld GC (2015) Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoS Genet 11:e1004951

    PubMed  PubMed Central  Google Scholar 

  • Lakich D, Kazazian HH, Antonarakis SE, Gitschier J (1993) Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet 5:236–241

    CAS  PubMed  Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512

    CAS  PubMed  Google Scholar 

  • Lee HJ, Kim E, Kim J-S (2010) Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 20:81–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Kweon J, Kim E, Kim S, Kim J-S (2012) Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res 22:539–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C-R, Wang B, Mojica JP, Mandáková T, Prasad KVSK, Goicoechea JL, Perera N, Hellsten U, Hundley HN, Johnson J, Grimwood J, Barry K, Fairclough S, Jenkins JW, Yu Y, Kudrna D, Zhang J, Talag J, Golser W, Ghattas K, Schranz ME, Wing R, Lysak MA, Schmutz J, Rokhsar DS, Mitchell-Olds T (2017) Young inversion with multiple linked QTLs under selection in a hybrid zone. Nat Ecol Evol 1:119

    PubMed  PubMed Central  Google Scholar 

  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, van Eck J, Lippman ZB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4:766–770

    CAS  PubMed  Google Scholar 

  • Li J, Shou J, Guo Y, Tang Y, Wu Y, Jia Z, Zhai Y, Chen Z, Xu Q, Wu Q (2015) Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J Mol Cell Biol 7:284–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Challa GS, Zhu H, Wei W (2016) Recurrence of chromosome rearrangements and reuse of DNA breakpoints in the evolution of the Triticeae genomes. G3 (Bethesda) 6:3837–3847

    CAS  Google Scholar 

  • Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36:1160–1163

    CAS  Google Scholar 

  • Livingstone K, Rieseberg L (2004) Chromosomal evolution and speciation: a recombination-based approach. New Phytol 161:107–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry DB, Willis JH (2010) A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol 8:e1000500

    PubMed  PubMed Central  Google Scholar 

  • Lupski JR, Stankiewicz P (2005) Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet 1:e49

    PubMed  PubMed Central  Google Scholar 

  • Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han Y-C, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, Lowe SW, Ventura A (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38:579–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock B (1987) The discovery and characterization of transposable elements. Genes, Cells and Organisms. Great Books in Experimental Biology. Garland Pub, Spokane

    Google Scholar 

  • Medberry SL, Dale E, Qin M, Ow DW (1995) Intra-chromosomal rearrangements generated by Cre-lox site-specific recombination. Nucleic Acids Res 23:485–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro A, Barton NH (2003) Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes. Science 300:321–324

    CAS  PubMed  Google Scholar 

  • Ordon J, Gantner J, Kemna J, Schwalgun L, Reschke M, Streubel J, Boch J, Stuttmann J (2017) Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit. Plant J 89:155–168

    CAS  PubMed  Google Scholar 

  • Osborne BI, Wirtz U, Baker B (1995) A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox. Plant J 7:687–701

    CAS  PubMed  Google Scholar 

  • Ota S, Hisano Y, Ikawa Y, Kawahara A (2014) Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 19:555–564

    CAS  PubMed  Google Scholar 

  • Pacher M, Schmidt-Puchta W, Puchta H (2007) Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175:21–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park C-Y, Sung JJ, Kim D-W (2016) Genome editing of structural variations: modeling and gene correction. Trends Biotechnol 34:548–561

    CAS  PubMed  Google Scholar 

  • Peterson BA, Haak DC, Nishimura MT, Teixeira PJPL, James SR, Dangl JL, Nimchuk ZL (2016) Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS One 11:e0162169

    PubMed  PubMed Central  Google Scholar 

  • Petolino JF, Worden A, Curlee K, Connell J, Strange Moynahan TL, Larsen C, Russell S (2010) Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 73:617–628

    CAS  PubMed  Google Scholar 

  • Piazza A, Wright WD, Heyer W-D (2017) Multi-invasions are recombination byproducts that induce chromosomal rearrangements. Cell 170:760–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piganeau M, Ghezraoui H, de Cian A, Guittat L, Tomishima M, Perrouault L, René O, Katibah GE, Zhang L, Holmes MC, Doyon Y, Concordet J-P, Giovannangeli C, Jasin M, Brunet E (2013) Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 23:1182–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    CAS  PubMed  Google Scholar 

  • Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA 93:5055–5060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ, Zhang F, Sander JD, Reyon D, Joung JK, Voytas DF (2013) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 (Bethesda) 3:1707–1715

    PubMed Central  Google Scholar 

  • Qin M, Bayley C, Stockton T, Ow DW (1994) Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci USA 91:1706–1710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS, Schmidt C, Bronson RT, Davisson MT (1995) A mouse model for down syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184

    CAS  PubMed  Google Scholar 

  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480.e8

    PubMed  Google Scholar 

  • Russel WL (1951) X-ray-induced mutations in mice. Cold Spring Harb Symp Quant Biol 16:327–336

    Google Scholar 

  • Russell LB, Hunsicker PR, Cacheiro NL, Bangham JW, Russell WL, Shelby MD (1989) Chlorambucil effectively induces deletion mutations in mouse germ cells. Proc Natl Acad Sci USA 86:3704–3708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma T, Mochida K, Nakade S, Ezure T, Minagawa S, Yamamoto T (2018) Unexpected heterogeneity derived from Cas9 ribonucleoprotein-introduced clonal cells at the HPRT1 locus. Genes Cells 23:255–263

    CAS  PubMed  Google Scholar 

  • Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarno R, Vicq Y, Uematsu N, Luka M, Lapierre C, Carroll D, Bastianelli G, Serero A, Nicolas A (2017) Programming sites of meiotic crossovers using Spo11 fusion proteins. Nucleic Acids Res 45:e164

    PubMed  PubMed Central  Google Scholar 

  • Schimmel J, Kool H, van Schendel R, Tijsterman M (2017) Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells. EMBO J 36:3634–3649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt C, Pacher M, Puchta H (2019a) DNA break repair in plants and its application for genome engineering. Methods Mol Biol 1864:237–266

    CAS  PubMed  Google Scholar 

  • Schmidt C, Pacher M, Puchta H (2019b) Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system. Plant J 98:577–589

    CAS  PubMed  Google Scholar 

  • Schubert I (2018) What is behind “centromere repositioning”? Chromosoma 127:229–234

    CAS  PubMed  Google Scholar 

  • Schubert I, Vu GTH (2016) Genome stability and evolution: attempting a holistic view. Trends Plant Sci 21:749–757

    CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C (2013) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6:1365–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shou J, Li J, Liu Y, Wu Q (2018) Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion. Mol Cell 71:498–509.e4

    CAS  PubMed  Google Scholar 

  • Siebert R, Puchta H (2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14:1121–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Small K, Iber J, Warren ST (1997) Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat Genet 16:96–99

    CAS  PubMed  Google Scholar 

  • Stubbs L, Carver EA, Cacheiro NL, Shelby M, Generoso W (1997) Generation and characterization of heritable reciprocal translocations in mice. Methods 13:397–408

    CAS  PubMed  Google Scholar 

  • Thompson SL, Compton DA (2011) Chromosomes and cancer cells. Chromosome Res 19:433–444

    PubMed  PubMed Central  Google Scholar 

  • Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, Rodriguez-Perales S (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun 5:3964

    CAS  PubMed  Google Scholar 

  • Torres-Ruiz R, Martinez-Lage M, Martin MC, Garcia A, Bueno C, Castaño J, Ramirez JC, Menendez P, Cigudosa JC, Rodriguez-Perales S (2017) Efficient recreation of t(11;22) EWSR1-FLI1 + in human stem cells using CRISPR/Cas9. Stem Cell Rep 8:1408–1420

    CAS  Google Scholar 

  • Tsai TF, Jiang YH, Bressler J, Armstrong D, Beaudet AL (1999) Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader–Willi syndrome. Hum Mol Genet 8:1357–1364

    CAS  PubMed  Google Scholar 

  • Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350

    CAS  PubMed  Google Scholar 

  • Wang Y, Copenhaver GP (2018) Meiotic recombination: mixing it up in plants. Annu Rev Plant Biol 69:577–609

    CAS  PubMed  Google Scholar 

  • Wang H, Xu X (2017) Microhomology-mediated end joining: new players join the team. Cell Biosci 7:6

    PubMed  PubMed Central  Google Scholar 

  • Wellenreuther M, Bernatchez L (2018) Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol (Amst) 33:427–440

    Google Scholar 

  • Wolter F, Schindele P, Puchta H (2019) Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol 19:176

    PubMed  PubMed Central  Google Scholar 

  • Wu R, Lucke M, Jang Y-T, Zhu W, Symeonidi E, Wang C, Fitz J, Xi W, Schwab R, Weigel D (2018) An efficient CRISPR vector toolbox for engineering large deletions in Arabidopsis thaliana. Plant Methods 14:65

    PubMed  PubMed Central  Google Scholar 

  • Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, Mieczkowski P, Wood RD, Gupta GP, Ramsden DA (2016) Essential roles for polymerase θ-mediated end joining in the repair of chromosome breaks. Mol Cell 63:662–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin K, Gao C, Qiu J-L (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107

    CAS  PubMed  Google Scholar 

  • Yu C, Han F, Zhang J, Birchler J, Peterson T (2012) A transgenic system for generation of transposon Ac/Ds-induced chromosome rearrangements in rice. Theor Appl Genet 125:1449–1462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ, Burel SA, Lagasse E, Weissman IL, Akashi K, Zhang DE (2001) AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 98:10398–10403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zapata L, Ding J, Willing E-M, Hartwig B, Bezdan D, Jiao W-B, Patel V, Velikkakam James G, Koornneef M, Ossowski S, Schneeberger K (2016) Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proc Natl Acad Sci USA 113:E4052–E4060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Peterson T (2004) Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics 167:1929–1937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Raina S, Li H, Li J, Dec E, Ma H, Huang H, Fedoroff NV (2003) Resources for targeted insertional and deletional mutagenesis in Arabidopsis. Plant Mol Biol 53:133–150

    CAS  PubMed  Google Scholar 

  • Zhang C, Liu C, Weng J, Cheng B, Liu F, Li X, Xie C (2017) Creation of targeted inversion mutations in plants using an RNA-guided endonuclease. Crop J 5:83–88

    CAS  Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19:210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36:1211–1216

    Google Scholar 

Download references

Acknowledgements

We thank Amy Whitbread for critical reading of the manuscript. This work was supported by the European Research Council (Grant number ERC-2016-AdG_741306 CRISBREED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Puchta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, C., Schindele, P. & Puchta, H. From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas. aBIOTECH 1, 21–31 (2020). https://doi.org/10.1007/s42994-019-00002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42994-019-00002-0

Keywords

Navigation