Skip to main content

Advertisement

Log in

Anthropogenic habitat disturbance and food availability affect the abundance of an endangered primate: a regional approach

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Anthropogenic habitat disturbances are causing large-scale declines in animal abundance. For many species, information on the drivers of decline is lacking or restricted to single sites, despite calls for regional approaches. In this study, we determined the effect of different types of habitat disturbance (natural or anthropogenic) and ecological factors on Geoffroy’s spider monkey (Ateles geoffroyi) abundance using a regional approach. We selected this study species because of its high degree of social flexibility and its endangered status. We surveyed 4 sites in the Yucatan Peninsula and recorded the number of individual monkeys encountered along 72 line-transect segments each measuring 500 m. Habitat disturbance variables were obtained from open-access databases and included distance to roads, presence and number of hurricanes, forest loss, and presence of forest fires. Ecological factors were based on data collected during vegetation surveys and included number and basal area of feeding tree species, and canopy height. We ran generalized linear mixed models and found that monkey abundance was negatively affected by forest loss but positively affected by the basal area of feeding trees. We, therefore, suggest that a combination of anthropogenic and ecological factors affects spider monkey abundance. Spider monkey’s high degree of social flexibility may be a mechanism allowing them to adjust to changes in their environment when canopy connectivity is not lost. Our results provide policy and conservation decision makers with key information to develop regional conservation plans. Additionally, our methods can be used to identify the factors that affect the abundance of other mammal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ameca EI, Mace GM, Cowlishaw G, Pettorelli N (2019) Relative vulnerability to hurricane disturbance for endangered mammals in Mexico: a call for adaptation strategies under uncertainty. Anim Conserv 22:262–273

    Article  Google Scholar 

  • Arroyo-Rodríguez V, Fahrig L (2014) Why is a landscape perspective important in studies of primates? Am J Primatol 76:901–909

    Article  PubMed  Google Scholar 

  • Arroyo-Rodríguez V, Mandujano S (2006) Forest fragmentation modifies habitat quality for Alouatta palliata. Int J Primatol 27:1079–1096

    Article  Google Scholar 

  • Arroyo-Rodríguez V, Pérez-Elissetche GK, Ordóñez-Gómez JD, González-Zamora A, Chaves ÓM, Sánchez-López S, Chapman CA, Morales-Hernández K, Pablo-Rodríguez M, Ramos-Fernández G (2017) Spider monkeys in human-modified landscapes. Trop Conserv Sci 10:1940082917719788

    Article  Google Scholar 

  • Asensio N, Schaffner CM, Aureli F (2015) Quality and overlap of individual core areas are related to group tenure in female spider monkeys. Am J Primatol 77:777–785

    Article  PubMed  Google Scholar 

  • Aureli F, Schaffner CM, Boesch C, Bearder SK, Call J, Chapman CA, Connor R, Di Fiore A, Dunbar RIM, Henzi SP, Holekamp K, Korstjens AH, Layton R, Lee P, Lehmann J, Manson JH, Ramos-Fernández G, Strier KB, van Schaik CP (2008) Fission-fusion dynamics: new research frameworks. Curr Anthropol 49:627–654

    Article  Google Scholar 

  • Barelli C, Mundry R, Araldi A, Hodges K, Rocchini D, Rovero F (2015) Modeling primate abundance in complex landscapes: a case study from the Udzungwa Mountains of Tanzania. Int J Primatol 36:209–226

    Article  Google Scholar 

  • Barton K (2018) MuMIn: multi-model inference. R package ver. 1.40. 4

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Beever EA, Hall LE, Varner J, Loosen AE, Dunham JB, Gahl MK, Smith FA, Lawler JJ (2017) Behavioral flexibility as a mechanism for coping with climate change. Front Ecol Environ 15:299–308

    Article  Google Scholar 

  • Benchimol M, Peres CA (2013) Predicting primate local extinctions within “Real - World” forest fragments: a pan-neotropical analysis. Am J Primatol 76:289–302

    Article  PubMed  Google Scholar 

  • Bohn JL, Diemont SAW, Gibbs JP, Stehman SV, Mendoza Vega J (2014) Implications of Mayan agroforestry for biodiversity conservation in the Calakmul Biosphere Reserve, Mexico. Agrofor Syst 88:269–285

    Article  Google Scholar 

  • Bolker B (2015) Linear and generalized linear mixed models. In: Fox G, Negrete-Yankelevich S, Sosa VJ (eds) Ecological statistics. Contemporary theory and application. Oxford University Press, Oxford, pp 309–333

    Chapter  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Bolt LM, Schreier AL, Voss KA, Sheehan EA, Barrickman NL, Pryor NP, Barton MC (2018) The influence of anthropogenic edge effects on primate populations and their habitat in a fragmented rainforest in Costa Rica. Primates 59:301–311

    Article  PubMed  Google Scholar 

  • Bonilla-Moheno M (2012) Damage and recovery of forest structure and composition after two subsequent hurricanes in the Yucatan Peninsula. Caribb. J. Sci. 46:240–248

    Article  Google Scholar 

  • Campbell CJ, Aureli F, Chapman CA, Ramos-Fernández G, Matthews K, Russo SE, Suarez S, Vick L (2005) Terrestrial behavior of Ateles spp. Int J Primatol 26:1039–1051

    Article  Google Scholar 

  • Chapman CA (1989) Primate populations in northwestern Costa Rica: potential for recovery. Primate Conserv. 10:37–44

    Google Scholar 

  • Chapman CA, Chapman LJ, Wrangham RW (1995) Ecological constraints on group size: an analysis of spider monkey and chimpanzee subgroups. Behav Ecol Sociobiol 36:59–70

    Article  Google Scholar 

  • Chaves ÓM, Stoner KE, Arroyo-Rodríguez V (2012) Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico. Biotropica 44:105–113

    Article  Google Scholar 

  • Chazdon RL (2014) Second growth: The promise of tropical forest regeneration in an age of deforestation. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Chiarello AG (2000) Density and population size of mammals in remnants of Brazilian atlantic forest. Conserv Biol 14:1649–1657

    Article  Google Scholar 

  • Daniels AE, Painter K, Southworth J (2008) Milpa imprint on the tropical dry forest landscape in Yucatan, Mexico: remote sensing & field measurement of edge vegetation. Agric Ecosyst Environ 123:293–304

    Article  Google Scholar 

  • de Luna A, Link A, Montes A, Alfonso F, Mendieta L, Di Fiore A (2017) Increased folivory in brown spider monkeys Ateles hybridus living in a fragmented forest in Colombia. Endanger Species Res 32:123–134

    Article  Google Scholar 

  • Di Fiore A, Link A, Dew JL (2008) Diets of wild spider monkeys. In: Campbell CJ (ed) Spider monkeys behaviour, ecology and evolution of the genus Ateles. Cambridge University Press, Cambridge, pp 351–376

    Google Scholar 

  • Dupuy JM, Hernández-Stefanoni JL, Hernández-Juárez RA, Tetetla-Rangel E, López-Martínez JO, Leyequién-Abarca E, Tun-Dzul FJ, May-Pat F (2012) Patterns and correlates of Tropical Dry Forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica 44:151–162

    Article  Google Scholar 

  • Durán R, Campos G, Trejo JC, Simá P, May-Pat F, Qui MJ (2000) Listado Florístico de la Península de Yucatán. Centro de Investigación Científica de Yucatán, A.C., Mérida

    Google Scholar 

  • Ellis EA, Romero Montero JA, Hernández Gómez IU (2017) Deforestation processes in the state of Quintana Roo, Mexico: the role of land use and community forestry. Trop Conserv Sci 10:1–12

    Article  Google Scholar 

  • Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Di Fiore A, Nekaris KA-I, Nijman V, Heymann EW, Lambert JE, Rovero F, Barelli C, Setchell JM, Gillespie TR, Mittermeier RA, Arregoitia LV, de Guinea M, Gouveia S, Dobrovolski R, Shanee S, Shanee N, Boyle SA, Fuentes A, MacKinnon KC, Amato KR, Meyer ALS, Wich S, Sussman RW, Pan R, Kone I, Li B (2017) Impending extinction crisis of the world’s primates: why primates matter. Sci Adv 3:e1600946

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahrig L (2002) Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl 12:346–353

    Google Scholar 

  • Freckleton RP (2011) Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behav Ecol Sociobiol 65(1):91–101. https://doi.org/10.1007/s00265-010-1045-6

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Forstmeier W, Schielzeth H (2011) Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol 65:47–55

    Article  PubMed  Google Scholar 

  • Galán-Acedo C, Arroyo-Rodríguez V, Estrada A, Ramos-Fernández G (2018) Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography (Cop.) 41:2027–2037

    Article  Google Scholar 

  • García-Licona JB, Esparza-Olguín LG, Martínez-Romero E (2014) Estructura y composición de la vegetación leñosa de selvas en differentes estadios sucessionales en el ejido El Carmen II, Calakmul, México. Polibotánica 38:1–26

    Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D-X, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanya G, Chapman CA (2012) Linking feeding ecology and population abundance: a review of food resource limitation on primates. Ecol Res 28:183–190

    Article  Google Scholar 

  • Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2:e616

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, Robinson BS, Hodgson DJ, Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ. https://doi.org/10.7717/peerj.4794

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartter J, Lucas C, Gaughan AE, Lizama Aranda L (2008) Detecting tropical dry forest succession in a shifting cultivation mosaic of the Yucatán Peninsula, Mexico. Appl Geogr 28:134–149

    Article  Google Scholar 

  • Imong I, Robbins MM, Mundry R, Bergl R, Kühl HS (2014) Distinguishing ecological constraints from human activity in species range fragmentation: the case of Cross River gorillas. Anim Conserv 17:323–331

    Article  Google Scholar 

  • IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Díaz S, Settele J, Brondízio ES, Ngo HT, Guèze M, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Roy Chowdhury R, Shin YJ, Visseren-Hamakers IJ, Willis KJ, Zayas CN (eds). IPBES Secretariat, Bonn

  • Irwin MT, Wright PC, Birkinshaw C, Fisher BL, Gardner CJ, Glos J, Goodman SM, Loiselle P, Rabeson P, Raharison J-L, Raherilalao MJ, Rakotondravony D, Raselimanana A, Ratsimbazafy J, Sparks JS, Wilmé L, Ganzhorn JU (2010) Patterns of species change in anthropogenically disturbed forests of Madagascar. Biol Conserv 143:2351–2362

    Article  Google Scholar 

  • Johns AD (1988) Effects of ‘selective’ timber extraction on rain forest structure and composition and some consequences for frugivores and folivores. Biotropica 20:31–37

    Article  Google Scholar 

  • Kirika JM, Farwig N, Bohning-Gaese K (2008) Effects of local disturbance of tropical forests on frugivores and seed removal of a small-seeded Afrotropical tree. Conserv Biol 22:318–328

    Article  PubMed  Google Scholar 

  • Kirkpatrick L, Maher SJ, Lopez Z, Lintott PR, Bailey SA, Dent D, Park KJ (2017) Bat use of commercial coniferous plantations at multiple spatial scales: management and conservation implications. Biol Conserv 206:1–10

    Article  Google Scholar 

  • Kolowski JM, Alonso A (2012) Primate abundance in an unhunted region of the northern Peruvian Amazon and the influence of seismic oil exploration. Int J Primatol 33:958–971

    Article  Google Scholar 

  • Komers PE (1997) Behavioural plasticity in variable environments. Can J Zool 75:161–169

    Article  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ribeiro JELS, Giraldo JP, Lovejoy TE, Condit R, Chave J, Harms KE, D’Angelo S (2006) Rapid decay of tree-community composition in Amazonian forest fragments. Proc Natl Acad Sci USA 103:19010–19014

    Article  CAS  PubMed  Google Scholar 

  • Martínez E, Galindo-Leal C (2002) La vegetación de Calakmul, Campeche, México: clasificación, descripción y distribución. Bot Sci 71:32

    Google Scholar 

  • Mascorro VS, Coops NC, Kurz WA, Olguín M (2016) Attributing changes in land cover using independent disturbance datasets: a case study of the Yucatan Peninsula, Mexico. Reg Environ Change 16:213–228

    Article  Google Scholar 

  • Michalski F, Peres CA (2005) Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biol Conserv 124:383–396

    Article  Google Scholar 

  • Mourthé I (2014) Response of frugivorous primates to changes in fruit supply in a northern Amazonian forest. Brazilian J. Biol. 74:720–727

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  • Ordóñez-Gómez JD, Arroyo-Rodríguez V, Nicasio-Arzeta S, Cristóbal-Azkarate J (2015) Which is the appropriate scale to assess the impact of landscape spatial configuration on the diet and behavior of spider monkeys? Am J Primatol 77:56–65

    Article  PubMed  Google Scholar 

  • Peres CA (1999) General guidelines for standardizing line-transect surveys of tropical forest primates. Neotrop Primates 7:11–16

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing

  • Ramos-Fernández G, Ayala-Orozco B (2003) Population size and habitat use of spider monkeys at Punta Laguna, Mexico. In: Marsh LK (ed) Primates in fragments: ecology and conservation. Klewer Academic/Plenum Publishers, New York, pp 191–209

    Chapter  Google Scholar 

  • Ramos-Fernández G, Wallace RB (2008) Spider monkey conservation in the twenty-first century: recognizing risks and opportunities. In: Campbell CJ (ed) Spider monkeys behaviour, ecology and evolution of the genus Ateles. Cambridge University Press, Cambridge, pp 351–376

    Chapter  Google Scholar 

  • Ramos-Fernández G, Aguilar SES, Schaffner CM, Vick LG, Aureli F (2013) Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan Peninsula, Mexico. PLoS One 8:1–10

    Article  CAS  Google Scholar 

  • Rhodes J, McAlpine C, Zuur A, Smith G, Ieno E (2009) GLMM applied on the spatial distribution of koalas in a fragmented landscape. In: Mixed effects models and extensions in ecology with R. Statistics for biology and health. Springer, New York, pp 469–492

    Chapter  Google Scholar 

  • Rodrigues MA (2017) Female spider monkeys (Ateles geoffroyi) cope with anthropogenic disturbance through fission–fusion dynamics. Int J Primatol 38:838–855

    Article  PubMed  PubMed Central  Google Scholar 

  • Rovero F, Struhsaker TT (2007) Vegetative predictors of primate abundance: utility and limitations of a fine-scale analysis. Am J Primatol 69:1242–1256

    Article  PubMed  Google Scholar 

  • Rovero F, Mtui AS, Kitegile AS, Nielsen MR (2012) Hunting or habitat degradation? Decline of primate populations in Udzungwa Mountains, Tanzania: an analysis of threats. Biol Conserv 146:89–96

    Article  Google Scholar 

  • Schaffner CM, Rebecchini L, Ramos-Fernández G, Vick LG, Aureli F (2012) Spider monkeys (Ateles geoffroyi yucatenensis) cope with the negative consequences of hurricanes through changes in diet, activity budget, and fission–fusion dynamics. Int J Primatol 33:922–936

    Article  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  • Serckx A, Huynen M-C, Beudels-Jamar RC, Vimond M, Bogaert J, Kühl HS (2016) Bonobo nest site selection and the importance of predictor scales in primate ecology. Am J Primatol 78:1326–1343

    Article  PubMed  Google Scholar 

  • Sikkink PG, Zuur AF, Ieno EN, Smith GM (2007) Monitoring for change: using generalised least squares, non-metric multidimensional scaling, and the Mantel test on western Montana grasslands. In: Analysing ecological data. Statistics for biology and health. Springer, New York, pp 463–484

    Chapter  Google Scholar 

  • SMN (2016) Normales climatológicas en la estación 00023012 (Cobá, Quintana Roo), periodo 1981–2010 [WWW Document]. Serv. Meteorológico Nac. Com. Nac. el Agua Mex. URL http://smn.cna.gob.mx/es/informacion-climatologica-ver-estado?estado=qroo. Accessed 21 Sep 2016

  • Spaan D, Ramos-Fernández G, Schaffner CM, Pinacho-Guendulain B, Aureli F (2017) How survey design affects monkey counts: a case study on individually recognized spider monkeys (Ateles geoffroyi). Folia Primatol 88:409–420

    Article  PubMed  Google Scholar 

  • Strindberg S, Maisels F, Williamson EA, Blake S, Stokes EJ, Aba’a R, Abitsi G, Agbor A, Ambahe RD, Bakabana PC, Bechem M, Berlemont A, Bokoto de Semboli B, Boundja PR, Bout N, Breuer T, Campbell G, De Wachter P, Ella Akou M, Esono Mba F, Feistner ATC, Fosso B, Fotso R, Greer D, Inkamba-Nkulu C, Iyenguet CF, Jeffery KJ, Kokangoye M, Kühl HS, Latour S, Madzoke B, Makoumbou C, Malanda G-AF, Malonga R, Mbolo V, Morgan DB, Motsaba P, Moukala G, Mowawa BS, Murai M, Ndzai C, Nishihara T, Nzooh Z, Pintea L, Pokempner A, Rainey HJ, Rayden T, Ruffler H, Sanz CM, Todd A, Vanleeuwe H, Vosper A, Warren Y, Wilkie DS (2018) Guns, germs, and trees determine density and distribution of gorillas and chimpanzees in Western Equatorial Africa. Sci Adv 4:eaar2964

    Article  PubMed  PubMed Central  Google Scholar 

  • Urquiza-Haas T, Dolman PM, Peres CA (2007) Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: effects of forest disturbance. For Ecol Manag 247:80–90

    Article  Google Scholar 

  • van Roosmalen MGM, Klein LL (1988) The Spider Monkeys, Genus Ateles. In: Mittermeier RA, Rylands AB, Coimbra-Filho A, Fonseca GAB (eds) Ecology and behaviour of neotropical primates, vol 2. World Wildlife Foundation, Washington, pp 455–537

    Google Scholar 

  • van Schaik CP (2013) The costs and benefits of flexibility as an expression of behavioural plasticity: a primate perspective. Philos Trans R Soc B Biol Sci 368:20120339

    Article  Google Scholar 

  • Vick LG (2008) Immaturity in spider monkeys: a risky business. In: Campbell CJ (ed) Spider monkeys—behaviour, ecology and evolution of the genus Ateles. Cambridge University Press, Cambridge, pp 288–328

    Chapter  Google Scholar 

  • Wallace RB (2005) Seasonal variations in diet and foraging behavior of Ateles chamek in a southern Amazonian tropical forest. Int J Primatol 26:1053–1075

    Article  Google Scholar 

  • Walsh PD, Abernethy KA, Bermejo M, Beyers R, De Wachter P, Akou ME, Huijbregts B, Mambounga DI, Toham AK, Kilbourn AM, Lahm SA, Latour S, Maisels F, Mbina C, Mihindou Y, Ndong Obiang S, Effa EN, Starkey MP, Telfer P, Thibault M, Tutin CEG, White LJT, Wilkie DS (2003) Catastrophic ape decline in western equatorial Africa. Nature 422:611–614

    Article  CAS  PubMed  Google Scholar 

  • Worman CO, Chapman CA (2006) Densities of two frugivorous primates with respect to forest and fragment tree species composition and fruit availability. Int J Primatol 27:203–225

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Karla Hernandez Hernandez, Braulio Pinacho-Guendulain and local field assistants in Bala’an K’aax, Calakmul, Otoch Ma’ax yetel Kooh and Los Arboles for assistance with data collection. We thank Alfredo Dorantes Euán for help in identifying tree species and Dr. V. Sosa Fernández, Dr. R. Guevara-Hernández and Dr. V. Arroyo-Rodríguez for advice on the analyses. We would also like to thank Operation Wallacea, the Instituto Politécnico Nacional, Instituto de Ecología, A.C., the Instituto de Neuroetología of the Universidad Veracruzana and Los Arboles Tulum for logistical support. This work was supported by the Consejo Nacional de Ciencia y Tecnología [CONACYT: CVU: 637,705]; CONANP [PROCER/DRPYyCM/2/2015]; National Geographic Society [9784-15]; and Chester Zoo. Research complied with protocols approved by the Secretaría del Medio Ambiente y Recursos Naturales [SEMARNAT: SGPA/DGVS/10405/15] and adhered to the legal requirements of Mexico. The Comisión Nacional de Áreas Naturales Protegidas (CONANP) and Los Arboles Tulum gave us permission to conduct surveys in the four protected areas. We thank Dr. Emmanuel Serrano and one anonymous reviewer for their comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Spaan.

Additional information

Handling editor: Emmanuel Serrano.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spaan, D., Ramos-Fernández, G., Bonilla-Moheno, M. et al. Anthropogenic habitat disturbance and food availability affect the abundance of an endangered primate: a regional approach. Mamm Biol 100, 325–333 (2020). https://doi.org/10.1007/s42991-020-00025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-020-00025-x

Keywords

Navigation