Skip to main content
Log in

Finer analysis of the Nehari set associated to a class of Kirchhoff-type equations

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

We extend and improve the results of Chen-Ou (Comput. Math. Appl. 77(10):2859–2866, 2019), which concern a Kirchhoff-type equation depending on two real parameters \(\lambda ,\mu\). Our technique, which relies upon a refined analysis of the Nehari set associated to the problem, permit us prove existence and multiplicity of solutions by minimizing the associated energy functional over components of the Nehari set. We also analyze the threshold of the method and prove existence of solutions even in the case where the Nehari set is not a manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49(1), 85–93 (2005). https://doi.org/10.1016/j.camwa.2005.01.008

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, V.: Infinitely many periodic solutions for a class of fractional Kirchhoff problems. Monatsh. Math. 190(4), 615–639 (2019). https://doi.org/10.1007/s00605-019-01306-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, V., Isernia, T.: A multiplicity result for a fractional Kirchhoff equation in \(\mathbb{R}^{N}\) with a general nonlinearity. Commun. Contemp. Math. 20(5), 1750054, 17 (2018). https://doi.org/10.1142/S0219199717500547

  4. Autuori, G., Colasuonno, F., Pucci, P.: On the existence of stationary solutions for higher-order \(p\)-Kirchhoff problems. Commun. Contemp. Math. 16(5), 1450002, 43 (2014). https://doi.org/10.1142/S0219199714500023

  5. Chen, B., Ou, Z.Q.: Existence and bifurcation behavior of positive solutions for a class of Kirchhoff-type problems. Comput. Math. Appl. 77(10), 2859–2866 (2019). https://doi.org/10.1016/j.camwa.2019.01.018

    Article  MathSciNet  MATH  Google Scholar 

  6. Corrêa, F.J.S.A., Figueiredo, G.M.: On an elliptic equation of \(p\)-Kirchhoff type via variational methods. Bull. Austral. Math. Soc. 74(2), 263–277 (2006). https://doi.org/10.1017/S000497270003570X

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai, G.: Eigenvalues, global bifurcation and positive solutions for a class of nonlocal elliptic equations. Topol. Methods Nonlinear Anal. 48(1), 213–233 (2016). https://doi.org/10.12775/TMNA.2016.043

  8. D’Ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108(2), 247–262 (1992). https://doi.org/10.1007/BF02100605

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014). https://doi.org/10.1016/j.na.2013.08.011

    Article  MathSciNet  MATH  Google Scholar 

  10. Ilyasov, Y.: On extreme values of Nehari manifold method via nonlinear Rayleigh’s quotient. Topol. Methods Nonlinear Anal. 49(2), 683–714 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Ilyasov, Y., Silva, K.: On branches of positive solutions for \(p\)-Laplacian problems at the extreme value of the Nehari manifold method. Proc. Amer. Math. Soc. 146(7), 2925–2935 (2018). https://doi.org/10.1090/proc/13972

    Article  MathSciNet  MATH  Google Scholar 

  12. Junior, J.R.S., Siciliano, G.: Positive solutions for a Kirchhoff problem with vanishing nonlocal term. J. Differ. Equ. 265(5), 2034–2043 (2018). https://doi.org/10.1016/j.jde.2018.04.027

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  14. Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), North-Holland Math. Stud., vol. 30, pp. 284–346. North-Holland, Amsterdam-New York (1978)

  15. Nehari, Z.: On a class of nonlinear second-order differential equations. Trans. Amer. Math. Soc. 95, 101–123 (1960). https://doi.org/10.2307/1993333

    Article  MathSciNet  MATH  Google Scholar 

  16. Nehari, Z.: Characteristic values associated with a class of non-linear second-order differential equations. Acta Math. 105, 141–175 (1961). https://doi.org/10.1007/BF02559588

    Article  MathSciNet  MATH  Google Scholar 

  17. Pokhozhaev, S.I.: The fibration method for solving nonlinear boundary value problems. Trudy Mat. Inst. Steklov. 192, 146–163 (1990). Translated in Proc. Steklov Inst. Math. 1992, no. 3, 157–173, Differential equations and function spaces (Russian)

  18. Pucci, P., Rădulescu, V.D.: Progress in nonlinear Kirchhoff problems [Editorial]. Nonlinear Anal. 186, 1–5 (2019). https://doi.org/10.1016/j.na.2019.02.022

    Article  MathSciNet  MATH  Google Scholar 

  19. Silva, K.: The bifurcation diagram of an elliptic kirchhoff-type equation with respect to the stiffness of the material. Zeitschrift für angewandte Mathematik und Physik 70(4), 93 (2019). https://doi.org/10.1007/s00033-019-1137-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Silva, K.: On an abstract bifurcation result concerning homogeneous potential operators with applications to PDEs. J. Differ. Equ. 269(9), 7643–7675 (2020). https://doi.org/10.1016/j.jde.2020.06.001

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaye Silva.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

Kaye Silva was partially supported by CNPq—Grant 408604/2018-2. Steffânio M. de Sousa was partially supported by CAPES.

Appendix

Appendix

Lemma 7

There holds:

(i) :

Let \(a\lambda _1<\lambda \le \lambda '< \lambda ^*\) and \(b\mu _1\le \mu \le \mu '\le \mu ^*(\lambda ')\) then \({I}^+_{\lambda ,\mu }>{I}^+_{\lambda ',\mu '}\), where \((\lambda ,\mu )\ne (\lambda ',\mu ')\);

(ii) :

Take \(u\in H^1_0(\varOmega )\setminus {0}\). Let \(B \subset {\mathbb {R}}^2\) be an open such that \(s_{\lambda ,\mu }(u)\) are well defined for all \((\lambda ,\mu ) \in B\). Then the function \((\lambda ,\mu )\mapsto {\varPhi }_{\lambda ,\mu |{\mathcal {N}}^+_{\lambda ,\mu }}(u)\) is continuous. Moreover, if \(\lambda \le \lambda '\), \(\mu \le \mu '\) and \(u\in {\mathcal {N}}^+_{\lambda ,\mu }\cap {\mathcal {N}}^+_{\lambda ',\mu '}\) then \(\varPhi _{\lambda ,\mu }(u)>\varPhi _{\lambda ',\mu '}(u)\), where \((\lambda ,\mu )\ne (\lambda ',\mu ')\)

Proof

  1. (i)

    By Proposition 8 there exists an \(u\in H_0^1(\varOmega )\) such that \({\hat{J}}^+_{\lambda ,\mu }=\varPhi _{\lambda ,\mu }(u)\), since that \((\lambda ,\mu )\ne (\lambda ',\mu ')\), we can suppose without loss of generality that \(\mu <\mu '\) which implies that \(H_{\lambda '}(u)\le H_{\lambda }(u)<0\) and \(G_{\mu '}(u)<G_\mu (u)\) hence

    $$\begin{aligned} \varPhi _{\lambda ,\mu }(u)=\frac{1}{2}H_\lambda (u)+\frac{1}{4}G_\mu (u)>\frac{1}{2}H_{\lambda '}(u)+\frac{1}{4}G_{\mu '}(u). \end{aligned}$$
    (28)

    We claim that \(G_{\mu '}(u)>0\). Indeed, since \(H_{\lambda '}(u)<0\) it follows that \(u\in {\mathcal {M}}_{\lambda '}\) and by definition of the \(\mu ^*(\lambda ')\) and by Corollary 1 we conclude that \(\mu ^*(\lambda ')< b\frac{\Vert u\Vert ^4}{\Vert u\Vert ^4_4}\) what implies that \(G_{\mu ^*(\lambda ')}(u)>0\), once that \(\mu '\le \mu ^*(\lambda ')\) we conclude \(G_{\mu '}(u)>0\). Therefore \(H_{\lambda '}(u)<0<G_{\mu '}(u)\) and from Proposition 1 there exists a \(s_{\lambda ',\mu '}(u)>0\) such that \(s_{\lambda ',\mu '}(u)u\in {\mathcal {N}}_{\lambda '.\mu '}^+\) it follows by (28)

    $$\begin{aligned} {I}^+_{\lambda ',\mu '}\le \varPhi ^+_{\lambda ',\mu '}(u)<\varPhi _{\lambda ',\mu '}(u)<\varPhi _{\lambda ,\mu }(u)={I}^+_{\lambda ,\mu }. \end{aligned}$$
  2. (ii)

    It is immediately of \(\varPhi _{\lambda ,\mu }(u)=\frac{1}{4}H_\lambda (u)\). \(\square\)

Remark 3

It is worthwhile to point out that Lemma 7 also holds for \({I}^-_{\lambda ,\mu }\) and \(\varPhi _{\lambda ,\mu |{\mathcal {N}}^-_{\lambda ,\mu }}\).

Now consider the mountain pass critical values

$$\begin{aligned} c_{\lambda ,\mu }:=\inf _{\varphi \in \varGamma _\lambda }\max _{t\in [0,1]}\varPhi _{\lambda ,\mu }(\gamma (t)), \end{aligned}$$
(29)

where \(\varGamma _\lambda =\{\gamma \in C([0,1],H_0^1(\varOmega )): \gamma (0)=0,\ \varPhi _{\lambda ,\mu }(\gamma (1))<0\}\).

Proposition 7

Let \((\lambda ,\mu )\in (-\infty ,a\lambda _1)\times (b\mu _1,+\infty )\). Then

$$\begin{aligned} c_{\lambda ,\mu }={\hat{J}}^-_{\lambda ,\mu }. \end{aligned}$$

Proof

Indeed, by one hand, we know from [5], via mountain pass theorem, that there exists \(u\in H^1_0(\varOmega )\) a positive solution for (1) with \(\varPhi _{\lambda ,\mu }(u)=c_{\lambda ,\mu }\). On the other hand we have by Theorem 2 that there exists \({\bar{u}}\in H^1_0(\varOmega )\) such that \({I}^-_{\lambda ,\mu }=\varPhi _{\lambda ,\mu }({\bar{u}})\). From Propositions 2 and 4, we have that \(u\in {\mathcal {N}}_{\lambda ,\mu }^-\) and hence

$$\begin{aligned} {I}^-_{\lambda ,\mu }\le c_{\lambda ,\mu }. \end{aligned}$$

We claim that \({I}^-_{\lambda ,\mu }=c_{\lambda ,\mu }\). Indeed, once that \({I}^-_{\lambda ,\mu }=\varPhi _{\lambda ,\mu }({\bar{u}})\) then we have \(G_\mu ({\bar{u}})<0<H_\lambda ({\bar{u}})\) hence there exists \(t_0>0\) sufficiently large such that \(\varPhi _{\lambda ,\mu }(t_0{\bar{u}})<0\). However by definition of \(c_{\lambda ,\mu }\) and \({I}_{\lambda ,\mu }\) we obtain

$$\begin{aligned} c_{\lambda ,\mu }\le \varPhi _{\lambda ,\mu }(s_{\lambda ,\mu }(t_0{\bar{u}})t_0{\bar{u}})=\varPhi _{\lambda ,\mu }({\bar{u}})={I}^-_{\lambda ,\mu }, \end{aligned}$$

therefore \({I}^-_{\lambda ,\mu }=c_{\lambda ,\mu }\). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, K., Sousa, S.M. Finer analysis of the Nehari set associated to a class of Kirchhoff-type equations. SN Partial Differ. Equ. Appl. 1, 43 (2020). https://doi.org/10.1007/s42985-020-00046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-020-00046-8

Keywords

Mathematics Subject Classification

Navigation