Skip to main content
Log in

A Review of Graph-Based Models for Entity-Oriented Search

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Entity-oriented search tasks heavily rely on exploiting unstructured and structured collections. Moreover, it is frequent for text corpora and knowledge bases to provide complementary views on a common topic. While, traditionally, the retrieval unit was the document, modern search engines have evolved to also retrieve entities and to provide direct answers to the information needs of the users. Cross-referencing information from heterogeneous sources has become fundamental, however a mismatch still exists between text-based and knowledge-based retrieval approaches. The former does not account for complex relations, while the latter does not properly support keyword-based queries and ranked retrieval. Graphs are a good solution to this problem, since they can be used to represent text, entities and their relations. In this survey, we examine text-based approaches and how they evolved to leverage entities and their relations in the retrieval process. We also cover multiple aspects of graph-based models for entity-oriented search, providing an overview on link analysis and exploring graph-based text representation and retrieval, leveraging knowledge graphs for document or entity retrieval, building entity graphs from text, using graph matching for querying with subgraphs, exploiting hypergraph-based representations, and ranking based on random walks on graphs. We close with a discussion on the topic and a view of the future to motivate the research of graph-based models for entity-oriented search, particularly as joint representation models for the generalization of retrieval tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://archie.icm.edu.pl/archie-adv_eng.html.

  2. Semantic search as a task either refers to the semantically informed retrieval of documents, or to the retrieval of entities or relations over RDF graphs. We cover work on either approach, as both tasks are entity-oriented, using semantic search indiscriminately in both cases.

  3. http://lucene.apache.org.

  4. A concordance is a list of terms and their context. In this case, the concordance is about entities and their context.

  5. http://lucene.apache.org/solr/.

  6. Sesame is now known as Eclipse RDF4J: http://rdf4j.org/.

  7. http://lemurproject.org/clueweb09/FACC1/.

  8. http://lemurproject.org/clueweb12/.

  9. http://mschuhma.github.io/rewq/.

  10. There is not much evidence of link mining as an area beyond this survey, which leads us to believe that, albeit a good one, this showed no relevant adoption by the community.

  11. http://www.seg.rmit.edu.au/zettair/.

  12. http://mg4j.di.unimi.it/.

  13. Google Trends is identified in the paper as Google Zeitgeist, which was a previous designation.

  14. Please notice that we normalized the notation to be consistent over the document. Here, \(\lambda = \beta\) and \(d = 1 - \alpha\), when compared to the original paper.

  15. http://sentistrength.wlv.ac.uk/.

  16. Not to be confused with conceptual graphs [177].

  17. https://tagme.d4science.org/tagme/.

  18. https://www.w3.org/DesignIssues/CG.html.

  19. https://wordnet.princeton.edu/.

  20. https://dblp.org.

  21. https://graphbrain.net.

  22. https://bioportal.bioontology.org/.

  23. Please note that quantum approaches to information retrieval have already been explored in the past, for instance with the quantum language models by Sordoni et al. [176].

  24. https://www.w3.org/RDF/.

References

  1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. Tensorflow: A system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283. USENIX Association, Savannah, GA (2016). https://www.usenix.org/conference/osdi16/technical-sessions/ presentation/abadi.

  2. Ai Q, Wang X, Bruch S, Golbandi N, Bendersky M, Najork M. Learning groupwise multivariate scoring functions using deep neural networks. In: Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, ICTIR 2019, Santa Clara, CA, USA, October 2–5, 2019, pp. 85–92 (2019). https://doi.org/10.1145/3341981.3344218.

  3. Akhmediyarova A, Kuandykova J, Kubekov B, Utepbergenov IT, Popkov V. Objective of modeling and computation of city electric transportation networks properties. In: Proc. of the Int. Conf. on Information Science and Management Engineering, Destech Publications, Inc., 2015, pp. 106–11.

  4. Akram M, Dudek WA. Intuitionistic fuzzy hypergraphs with applications. Inf Sci. 2013;218:182–93. https://doi.org/10.1016/j.ins.2012.06.024.

    Article  MathSciNet  MATH  Google Scholar 

  5. Allahyari M. Semantic web topic models: integrating ontological knowledge and probabilistic topic models. Athens: University of Georgia; 2016. (Ph.D. thesis).

  6. Amati G, van Rijsbergen CJ. Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans Inform Syst. 2002;20(4):357–89. https://doi.org/10.1145/582415.582416.

    Article  Google Scholar 

  7. Andersen R, Chung FRK, Lang KJ. Local graph partitioning using pagerank vectors. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21–24 October 2006, Berkeley, CA, USA, Proceedings, 2006. p. 475–86. https://doi.org/10.1109/FOCS.2006.44.

  8. Aparicio D, Ribeiro P, Silva F. Graphlet-orbit transitions (got): a fingerprint for temporal network comparison. PLoS One. 2018;13: e0205497. https://doi.org/10.1371/journal.pone.0205497.

    Article  Google Scholar 

  9. Arrington M. AOL proudly releases massive amounts of private data. https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/ (2006). Accessed on 13 Jul 2017.

  10. Arvola P, Geva S, Kamps J, Schenkel R, Trotman A, Vainio J. Overview of the INEX 2010 ad hoc track. In: Comparative Evaluation of Focused Retrieval—9th International Workshop of the Inititative for the Evaluation of XML Retrieval, INEX 2010, Vugh, The Netherlands, December 13–15, 2010, Revised Selected Papers, pp. 1–32 (2010). https://doi.org/10.1007/978-3-642-23577-1_1.

  11. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives, Z.G. Dbpedia. A nucleus for a web of open data. In: The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11–15, 2007., p. 722–35. https://doi.org/10.1007/978-3-540-76298-0_52.

  12. Avrachenkov K, Litvak N, Nemirovsky D, Osipova N. Monte Carlo methods in PageRank computation: when one iteration is sufficient. SIAM J Numer Anal. 2007;45(2):890–904. https://doi.org/10.1137/050643799.

    Article  MathSciNet  MATH  Google Scholar 

  13. Baeza-Yates R, Ciaramita M, Mika P, Zaragoza H. Towards semantic search. In: E. Kapetanios, V. Sugumaran, M. Spiliopoulou (eds.) Natural Language and Information Systems, 13th International Conference on Applications of Natural Language to Information Systems, NLDB 2008, London, UK, June 24–27, 2008, Proceedings, Lecture Notes in Computer Science, vol. 5039, pp. 4–11. Springer (2008). https://doi.org/10.1007/978-3-540-69858-6_2.

  14. Bahmani B, Chowdhury A, Goel A. Fast incremental and personalized pagerank. PVLDB. 2010;4(3):173–84. https://doi.org/10.14778/1929861.1929864.

    Article  Google Scholar 

  15. Bai J, Zhou K, Xue G, Zha H, Sun G, Tseng BL, Zheng Z, Chang Y. Multi-task learning for learning to rank in web search. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, Hong Kong, China, November 2–6, 2009, pp. 1549–1552 (2009). https://doi.org/10.1145/1645953.1646169.

  16. Balmin A, Hristidis V, Papakonstantinou, Y. Objectrank. Authority-based keyword search in databases. In 2004. p. 564–75 (http://www.vldb.org/conf/2004/RS15P2.PDF).

  17. Balog K. Entity-oriented search, the information retrieval series. Springer (2018);39. https://doi.org/10.1007/978-3-319-93935-3.

  18. Balog K, Kelly L, Schuth A. Head first: living labs for ad-hoc search evaluation. In: Li J, Wang XS, Garofalakis MN, Soboroff I, Suel T, Wang M (eds.) Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, November 3–7, 2014, pp. 1815–1818. ACM (2014). https://doi.org/10.1145/2661829.2661962.

  19. Balog K, de Rijke M, Franz R, Peetz H, Brinkman B, Johgi I, Hirschel M. SaHaRa: discovering entity-topic associations in online news. In: 8th International Semantic Web Conference (ISWC 2009) (2009).

  20. Balog K, Serdyukov P, de Vries AP. Overview of the TREC 2010 entity track. In: Voorhees EM, Buckland LP (eds.) Proceedings of The Nineteenth Text REtrieval Conference, TREC 2010, Gaithersburg, Maryland, USA, November 16–19, 2010, NIST Special Publication, vol. 500–294. National Institute of Standards and Technology (NIST) (2010). http://trec.nist.gov/pubs/trec19/papers/ ENTITY.OVERVIEW.pdf.

  21. Balog K, Serdyukov P, de Vries A.P. Overview of the TREC 2011 entity track. In: Proceedings of The Twentieth Text REtrieval Conference, TREC 2011, Gaithersburg, Maryland, USA, November 15–18, 2011 (2011). http://trec.nist.gov/pubs/trec20/papers/ ENTITY.OVERVIEW.pdf.

  22. Balog K, de Vries AP, Serdyukov P, Thomas P, Westerveld T. Overview of the TREC 2009 entity track. In: Proceedings of The Eighteenth Text REtrieval Conference, TREC 2009, Gaithersburg, Maryland, USA, November 17–20, 2009 (2009). http://trec.nist.gov/pubs/trec18/papers/ENT09.OVERVIEW.pdf.

  23. Banko M, Cafarella MJ, Soderland S, Broadhead M, Etzioni O. Open information extraction from the web. In: Veloso MM (ed.) IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6–12, 2007, pp. 2670–2676 (2007). http://ijcai.org/Proceedings/07/Papers/429.pdf.

  24. Bar-Yossef Z, Mashiach L. Local approximation of pagerank and reverse pagerank. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008, Singapore, July 20–24, 2008, pp. 865–866 (2008). https://doi.org/10.1145/1390334.1390545.

  25. Baraglia R, De Francisci Morales G, Lucchese C. Document similarity self-join with MapReduce. In: 2010 IEEE 10th International Conference on Data Mining (ICDM 2010), pp. 731–736 (2010). https://doi.org/10.1109/ICDM.2010.70.

  26. Bast H, Bäurle F, Buchhold B, Haussmann, E. Broccoli. Semantic full-text search at your fingertips. CoRR. abs/1207.2615 (2012). arxiv:1207.2615.

  27. Bast H, Buchhold B. An index for efficient semantic full-text search. In: Proceedings of the 22Nd ACM International Conference on Conference on Information and Knowledge Management, pp. 369–378 (2013). https://doi.org/10.1145/2505515.2505689.

  28. Bast H, Buchhold B, Haussmann E. Semantic search on text and knowledge bases. Found Trends Inform Retr. 2016;10(2–3):119–271. https://doi.org/10.1561/1500000032.

    Article  Google Scholar 

  29. Basu A, Blanning RW. Metagraphs: a tool for modeling decision support systems. Manag Sci 1994;40(12):1579–1600. https://www.jstor.org/stable/2632940.

  30. Bautin M, Skiena S. Concordance-based entity-oriented search. In: 2007 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2007, 2–5 November 2007, Silicon Valley, CA, USA, Main Conference Proceedings, pp. 586–592. IEEE Computer Society (2007). https://doi.org/10.1109/WI.2007.84.

  31. Bavelas A. Communication patterns in task-oriented groups. J Acoust Soc Am. 1950;22(6):725–30. https://doi.org/10.1121/1.1906679.

    Article  Google Scholar 

  32. Bellaachia A, Al-Dhelaan M. Random walks in hypergraph. In: Proceedings of the 2013 International Conference on Applied Mathematics and Computational Methods, Venice Italy, pp. 187–194 (2013). http://www.inase.org/library/2013/venice/bypaper/AMCM/AMCM-28.pdf.

  33. Bendersky M, Croft WB. Modeling higher-order term dependencies in information retrieval using query hypergraphs. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, pp. 941–950. ACM, New York, NY, USA (2012). https://doi.org/10.1145/2348283.2348408.

  34. Berge C. Graphes et hypergraphes. Paris: Dunod; 1970.

    MATH  Google Scholar 

  35. Berkhin P. A survey on PageRank computing. Internet Math. 2005;2(1):73–120. https://doi.org/10.1080/15427951.2005.10129098.

    Article  MathSciNet  MATH  Google Scholar 

  36. Berners-Lee T, Hendler J, Lassila O et al. The semantic web. Sci Am 2001;284(5):28–37. https://www.jstor.org/stable/26059207.

  37. Bhagdev R, Chapman S, Ciravegna F, Lanfranchi V, Petrelli D. Hybrid search: effectively combining keywords and semantic searches. In: Bechhofer S, Hauswirth M, Hoffmann J, Koubarakis M (eds.) The Semantic Web: Research and Applications, 5th European Semantic Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain, June 1–5, 2008, Proceedings, Lecture Notes in Computer Science, vol. 5021, pp. 554–568. Springer (2008). https://doi.org/10.1007/978-3-540-68234-9_41.

  38. Blanco R, Halpin H, Herzig D. Entity search evaluation over structured web data. In: Proceedings of The First International Workshop on Entity-Oriented Search (EOS) (2011). http://www.aifb.kit.edu/images/d/d9/EOS-SIGIR2011.pdf.

  39. Blanco R, Lioma C. Graph-based term weighting for information retrieval. Inform Retr. 2012;15(1):54–92. https://doi.org/10.1007/s10791-011-9172-x.

    Article  Google Scholar 

  40. Blanco R, Mika P, Vigna S. Effective and efficient entity search in RDF data. In: The Semantic Web - ISWC 2011—10th International Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I, pp. 83–97 (2011). https://doi.org/10.1007/978-3-642-25073-6_6.

  41. Bordino I, Mejova Y, Lalmas M. Penguins in sweaters, or serendipitous entity search on user-generated content. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management (CIKM 2013), pp. 109–118 (2013). https://doi.org/10.1145/2505515.2505680.

  42. Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Comput Netw. 1998;30(1–7):107–17. https://doi.org/10.1016/S0169-7552(98)00110-X.

    Article  Google Scholar 

  43. Bron M, Balog K, de Rijke M. Example based entity search in the web of data. In: Advances in Information Retrieval—35th European Conference on IR Research, ECIR 2013, Moscow, Russia, March 24–27, 2013. Proceedings, pp. 392–403 (2013). https://doi.org/10.1007/978-3-642-36973-5_33.

  44. Bu J, Tan S, Chen C, Wang C, Wu H, Zhang L, He X. Music recommendation by unified hypergraph: combining social media information and music content. In: Proceedings of the 18th International Conference on Multimedia 2010, Firenze, Italy, October 25–29, 2010, pp. 391–400 (2010). https://doi.org/10.1145/1873951.1874005.

  45. Burges CJC, Ragno R, Le QV. Learning to rank with nonsmooth cost functions. In: Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 4–7, 2006, pp. 193–200 (2006). http://papers.nips.cc/paper/2971-learning-to-rank-with- nonsmooth-cost-functions.

  46. Burges CJC, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender GN. Learning to rank using gradient descent. In: Machine Learning, Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn, Germany, August 7–11, 2005, pp. 89–96 (2005). https://doi.org/10.1145/1102351.1102363.

  47. Byrne K. Populating the semantic web—combining text and relational databases as rdf graphs. Ph.D. thesis, Institute for Communicating and Collaborative Systems, School of Informatics, University of Edinburgh (2009). http://hdl.handle.net/1842/3781.

  48. Campinas S, Ceccarelli D, Perry TE, Delbru R, Balog K, Tummarello G. The sindice-2011 dataset for entity-oriented search in the web of data. In: Proceedings of The First International Workshop on Entity-Oriented Search (EOS), pp. 26–32 (2011).

  49. Canfora G, Cerulo L. A taxonomy of information retrieval models and tools. J Comput Inform Technol. 2004;12(3):175–94. https://doi.org/10.2498/cit.2004.03.01.

    Article  Google Scholar 

  50. Caruana R. Multitask learning. Mach Learn. 1997;28(1):41–75. https://doi.org/10.1023/A:1007379606734.

    Article  MathSciNet  Google Scholar 

  51. Cattuto C, Schmitz C, Baldassarri A, Servedio VDP, Loreto V, Hotho A, Grahl M, Stumme G. Network properties of folksonomies. AI Commun. 2007;20(4):245–262. http://content.iospress.com/articles/ai-communications/aic410.

  52. Chakrabarti S. Dynamic personalized PageRank in entity-relation graphs. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8–12, 2007, pp. 571–580 (2007). https://doi.org/10.1145/1242572.1242650.

  53. Chen J, Xiong C, Callan J. An empirical study of learning to rank for entity search. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2016, Pisa, Italy, July 17–21, 2016, pp. 737–740 (2016). https://doi.org/10.1145/2911451.2914725.

  54. Chen R, Spina D, Croft WB, Sanderson M, Scholer F. Harnessing semantics for answer sentence retrieval. In: Balog K, Dalton J, Doucet A, Ibrahim Y (eds.) Proceedings of the Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval, ESAIR 2015, Melbourne, Australia, October 23, 2015, pp. 21–27. ACM (2015). https://doi.org/10.1145/2810133.2810136.

  55. Chitra U, Raphael BJ. Random walks on hypergraphs with edge-dependent vertex weights. In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA, pp. 1172–1181 (2019). http://proceedings.mlr.press/v97/chitra19a.html.

  56. Chung F. The heat kernel as the pagerank of a graph. Proc Natl Acad Sci. 2007;104(50):19735–40. https://doi.org/10.1073/pnas.0708838104.

    Article  Google Scholar 

  57. Chung F. A brief survey of PageRank algorithms. IEEE Trans Netw Sci Eng. 2014;1(1):38–42. https://doi.org/10.1109/TNSE.2014.2380315.

    Article  MathSciNet  Google Scholar 

  58. Ciglan M, Nørvåg K, Hluchý L. The semsets model for ad-hoc semantic list search. In: Proceedings of the 21st World Wide Web Conference 2012, WWW 2012, Lyon, France, April 16–20, 2012, pp. 131–140 (2012). https://doi.org/10.1145/2187836.2187855.

  59. Cohen WW, Ravikumar P, Fienberg SE. A comparison of string distance metrics for name-matching tasks. In: Kambhampati S, Knoblock CA (eds.) Proceedings of IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03), August 9–10, 2003, Acapulco, Mexico, pp. 73–78 (2003). http://www.isi.edu/info-agents/workshops/ijcai03/papers/ Cohen-p.pdf.

  60. Corso GMD, Gulli A, Romani F. Fast pagerank computation via a sparse linear system. Internet Math. 2005;2(3):251–73. https://doi.org/10.1080/15427951.2005.10129108.

    Article  MathSciNet  MATH  Google Scholar 

  61. Craswell N, Robertson SE, Zaragoza H, Taylor MJ. Relevance weighting for query independent evidence. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, Brazil, August 15–19, 2005, pp. 416–423 (2005). https://doi.org/10.1145/1076034.1076106.

  62. Delbru R, Toupikov N, Catasta M, Tummarello G, Decker S. Hierarchical link analysis for ranking web data. In: The Semantic Web: Research and Applications, 7th Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece, May 30–June 3, 2010, Proceedings, Part II, pp. 225–239 (2010). https://doi.org/10.1007/978-3-642-13489-0_16.

  63. Demartini G, Iofciu T, de Vries AP. Overview of the INEX 2009 entity ranking track. In: Focused Retrieval and Evaluation, 8th International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2009, Brisbane, Australia, December 7–9, 2009, Revised and Selected Papers, pp. 254–264 (2009). https://doi.org/10.1007/978-3-642-14556-8_26.

  64. Devezas J. Graph-based entity-oriented search. Ph.D. thesis, INESC TEC and Universities of Minho, Aveiro, and Porto (2021). https://hdl.handle.net/10216/133205.

  65. Dietz L. ENT rank: retrieving entities for topical information needs through entity-neighbor-text relations. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21–25, 2019, pp. 215–224 (2019). https://doi.org/10.1145/3331184.3331257.

  66. Dietz L, Schuhmacher M. An interface sketch for queripidia: query-driven knowledge portfolios from the web. In: Balog K, Dalton J, Doucet A, Ibrahim Y (eds.) Proceedings of the Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval, ESAIR 2015, Melbourne, Australia, October 23, 2015, pp. 43–46. ACM (2015). https://doi.org/10.1145/2810133.2810145.

  67. Dietz L, Schuhmacher M, Ponzetto SP. Queripidia: uuery-specific wikipedia construction. Proceedings of the 4th Workshop on Automated Knowledge Base Construction (AKBC 2014) (2014). http://ciir-publications.cs.umass.edu/pub/web/getpdf.php? id=1174.

  68. Dimitrov D, Singer P, Lemmerich F, Strohmaier M. What makes a link successful on wikipedia? In: Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth, Australia, April 3–7, 2017, pp. 917–926 (2017). https://doi.org/10.1145/3038912.3052613.

  69. Dourado ÍC, Galante R, Gonçalves MA, da Silva Torres R. Bag of textual graphs (botg): a general graph-based text representation model. J Assoc Inform Sci Technol. 2019;70(8):817–29. https://doi.org/10.1002/asi.24167.

    Article  Google Scholar 

  70. Emtage A, Deutsch P. Archie: an electronic directory service for the internet. In: Proceedings of the USENIX Winter 1992 Technical Conference, pp. 93–110. San Francisco, CA, USA (1992).

  71. Engström C, Silvestrov S. A componentwise pagerank algorithm. In: 16th Applied Stochastic Models and Data Analysis International Conference (ASMDA2015) with Demographics 2015 Workshop, 30 June–4 July 2015, University of Piraeus, Greece, pp. 185–198. ISAST: International Society for the Advancement of Science and Technology (2015). http://www.asmda.es/images/1_E-G_ASMDA2015_Proceedings.pdf.

  72. Ensan F, Bagheri E. Document retrieval model through semantic linking. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, February 6-10, 2017, pp. 181–190 (2017). https://doi.org/10.1145/3018661.3018692.

  73. Espín-Noboa L, Lemmerich F, Walk S, Strohmaier M, Musen MA. Hoprank: How semantic structure influences teleportation in pagerank (A case study on bioportal). In: The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, pp. 2708–2714 (2019). https://doi.org/10.1145/3308558.3313487.

  74. Fader A, Soderland S, Etzioni O. Identifying relations for open information extraction. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, 27–31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1535–1545 (2011). https://www.aclweb.org/anthology/D11-1142/.

  75. Fagin R, Kumar R, Sivakumar D. Comparing top k lists. SIAM J. Discrete Math. 2003;17(1):134–160. http://epubs.siam.org/sam-bin/dbq/article/41285.

  76. Fang H, Tao T, Zhai C. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Sheffield, UK, July 25–29, 2004, pp. 49–56 (2004). https://doi.org/10.1145/1008992.1009004.

  77. Fernández M, Cantador I, López V, Vallet D, Castells P, Motta E. Semantically enhanced information retrieval: an ontology-based approach. J Web Semant. 2011;9(4):434–52. https://doi.org/10.1016/j.websem.2010.11.003.

    Article  Google Scholar 

  78. Fernández M, López V, Sabou, M, Uren VS, Vallet D, Motta E, Castells P. Semantic search meets the web. In: Proceedings of the 2th IEEE International Conference on Semantic Computing (ICSC 2008), August 4–7, 2008, Santa Clara, California, USA, pp. 253–260. IEEE Computer Society (2008). https://doi.org/10.1109/ICSC.2008.52.

  79. Fletcher GHL, Hidders J, Larriba-Pey JL. (eds.): Graph data management, fundamental issues and recent developments. data-centric systems and applications. Springer; 2018. https://doi.org/10.1007/978-3-319-96193-4.

  80. Fogaras D. Where to start browsing the web? In: Innovative Internet Community Systems, Third International Workshop, IICS 2003, Leipzig, Germany, June 19–21, 2003, Revised Papers, pp. 65–79 (2003). https://doi.org/10.1007/978-3-540-39884-4_6.

  81. Fogaras D, Rácz B, Csalogány K, Sarlós T. Towards scaling fully personalized PageRank: algorithms, lower bounds, and experiments. Internet Math. 2005;2(3):333–58. https://doi.org/10.1080/15427951.2005.10129104.

    Article  MathSciNet  MATH  Google Scholar 

  82. Frank A, Király T, Király Z. On the orientation of graphs and hypergraphs. Discret Appl Math. 2003;131(2):385–400. https://doi.org/10.1016/S0166-218X(02)00462-6.

    Article  MathSciNet  MATH  Google Scholar 

  83. Freeman LC. A set of measures of centrality based on betweenness. Sociometry. 1977;40(1):35. https://doi.org/10.2307/3033543.

    Article  Google Scholar 

  84. Gabrilovich E, Markovitch S. Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Veloso MM (ed.) IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6–12, 2007, pp. 1606–1611 (2007). http://ijcai.org/Proceedings/07/Papers/259.pdf.

  85. Ganea O, Hofmann T. Deep joint entity disambiguation with local neural attention. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9–11, 2017, pp. 2619–2629 (2017). https://aclanthology.info/papers/D17-1277/d17-1277.

  86. Gao Y, Liang J, Han B, Yakout M, Mohamed A. KDD tutorial T39: building a large-scale, accurate and fresh knowledge graph. https://kdd2018tutorialt39.azurewebsites.net/ (2018). Accessed on 16 May 2019.

  87. Garshol LM. Metadata? Thesauri? Taxonomies? Topic maps! making sense of it all. J Inform Sci. 2004;30(4):378–91. https://doi.org/10.1177/0165551504045856.

    Article  Google Scholar 

  88. Gerritse EJ, Hasibi F, de Vries AP. Graph-embedding empowered entity retrieval. In: Jose JM, Yilmaz E, Magalhães J, Castells P, Ferro N, Silva MJ, Martins F (eds.) Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part I, Lecture Notes in Computer Science, vol. 12035, pp. 97–110. Springer (2020). https://doi.org/10.1007/978-3-030-45439-5_7.

  89. Getoor L, Diehl CP. Link mining: a survey. SIGKDD Explor Newsl. 2005;7(2):3–12. https://doi.org/10.1145/1117454.1117456.

    Article  Google Scholar 

  90. Gleich D, Zhukov L. Scalable computing for power law graphs: experience with parallel PageRank. Tech rep, Yahoo! Research. 2005.

  91. Gleich D, Zhukov L, Berkhin P. Fast parallel PageRank: A linear system approach. Tech. Rep. YRL-2004-038, Yahoo! Research (2004). http://research.yahoo.com/publication/YRL-2004-038.pdf.

  92. Gleich DF. Pagerank beyond the web. SIAM Rev. 2015;57(3):321–63. https://doi.org/10.1137/140976649.

    Article  MathSciNet  MATH  Google Scholar 

  93. Gleich DF, Lim L, Yu Y. Multilinear PageRank. SIAM J Matrix Anal Appl. 2015;36(4):1507–41. https://doi.org/10.1137/140985160.

    Article  MathSciNet  MATH  Google Scholar 

  94. Guo Z, Barbosa D. Robust entity linking via random walks. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, November 3–7, 2014, pp. 499–508 (2014). https://doi.org/10.1145/2661829.2661887.

  95. Gupta M, Bendersky M. Information retrieval with verbose queries. Found Trends Inform Retr. 2015;9(3–4):91–208. https://doi.org/10.1561/1500000050.

    Article  Google Scholar 

  96. Gyöngyi Z, Garcia-Molina H, Pedersen JO. In: (e)Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, August 31–September 3 2004, pp. 576–587 (2004). http://www.vldb.org/conf/2004/RS15P3.PDF.

  97. Gysel CV, de Rijke M, Kanoulas E. Learning latent vector spaces for product search. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24–28, 2016, pp. 165–174 (2016). https://doi.org/10.1145/2983323.2983702.

  98. Haentjens Dekker R, Birnbaum DJ. It’s more than just overlap: text as graph. In: Proceedings of Balisage: The Markup Conference 2017, vol. 19 (2017). https://doi.org/10.4242/BalisageVol19.Dekker01.

  99. Harel D. On visual formalisms. Commun ACM. 1988;31(5):514–30. https://doi.org/10.1145/42411.42414.

    Article  MathSciNet  Google Scholar 

  100. Harter SP. A probabilistic approach to automatic keyword indexing. Part II. An algorithm for probabilistic indexing. JASIS. 1975;26(5):280–9. https://doi.org/10.1002/asi.4630260504.

  101. Hasibi F, Nikolaev F, Xiong C, Balog K, Bratsberg SE, Kotov A, Callan J. Dbpedia-entity v2: a test collection for entity search. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7–11, 2017, pp. 1265–1268 (2017). https://doi.org/10.1145/3077136.3080751.

  102. Haveliwala T. Efficient computation of PageRank. Technical Report 1999-31, Stanford InfoLab (1999). http://ilpubs.stanford.edu:8090/386/.

  103. Haveliwala TH. Topic-sensitive PageRank: a context-sensitive ranking algorithm for web search. IEEE Trans Knowl Data Eng. 2003;15(4):784–96. https://doi.org/10.1109/TKDE.2003.1208999.

    Article  Google Scholar 

  104. Herrera J, Hogan A, Käfer T. BTC-2019: the 2019 billion triple challenge dataset. In: The Semantic Web—ISWC 2019—18th International Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019, Proceedings, Part II, pp. 163–180 (2019). https://doi.org/10.1007/978-3-030-30796-7_11.

  105. Hiemstra D. Information retrieval models, vol. chap. 1. Wiley; 2009. p. 1–19. https://doi.org/10.1002/9780470033647.ch1.

  106. Hogan A, Harth A, Decker S, ReConRank A: scalable ranking method for semantic web data with context. In 2006) (2006). (hdl.handle.net/10379/492).

  107. Huang A, Milne DN, Frank E, Witten IH. Learning a concept-based document similarity measure. J Assoc Inform Sci Technol. 2012;63(8):1593–608. https://doi.org/10.1002/asi.22689.

    Article  Google Scholar 

  108. Huang J, Chen C, Ye F, Wu J, Zheng Z, Ling G. Hyper2vec: biased random walk for hyper-network embedding. In: Database Systems for Advanced Applications—DASFAA 2019 International Workshops: BDMS, BDQM, and GDMA, Chiang Mai, Thailand, April 22–25, 2019, Proceedings, pp. 273–277 (2019). https://doi.org/10.1007/978-3-030-18590-9_27.

  109. Irrera O, Silvello G. Background linking: joining entity linking with learning to rank models. In: D. Dosso, S. Ferilli, P. Manghi, A. Poggi, G. Serra, G. Silvello (eds.) Proceedings of the 17th Italian Research Conference on Digital Libraries, Padua, Italy (virtual event due to the Covid-19 pandemic), February 18–19, 2021, CEUR Workshop Proceedings, vol. 2816, pp. 64–77. CEUR-WS.org (2021). http://ceur-ws.org/Vol-2816/paper6.pdf.

  110. Ito T, Shimbo M, Kudo T, Matsumoto Y. Application of kernels to link analysis. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, August 21–24, 2005, pp. 586–592 (2005). https://doi.org/10.1145/1081870.1081941.

  111. Jespersen O. The philosophy of grammar. Routledge (2013 [1924]). https://doi.org/10.4324/9780203716045.

  112. Johnson J. Hypernetworks in the science of complex systems, Series on Complexity Science, vol. 3. World Scientific (2014). https://doi.org/10.1142/p533.

  113. Jones KS. A statistical interpretation of term specificity and its application in retrieval. J Doc. 2004;60(5):493–502. https://doi.org/10.1108/00220410410560573.

    Article  Google Scholar 

  114. Kamphuis C. Graph databases for information retrieval. In: Jose JM, Yilmaz E, Magalhães M, Castells P, Ferro N, Silva MJ, Martins F (eds.) Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II, Lecture Notes in Computer Science, vol. 12036, pp. 608–612. Springer (2020). https://doi.org/10.1007/978-3-030-45442-5_79.

  115. Kandola JS, Shawe-Taylor J, Cristianini N. Learning semantic similarity. In: Advances in Neural Information Processing Systems 15 [Neural Information Processing Systems, NIPS 2002, December 9–14, 2002, Vancouver, British Columbia, Canada], pp. 657–664 (2002). http://papers.nips.cc/paper/2316-learning-semantic- similarity.

  116. Kleinberg JM. Authoritative sources in a hyperlinked environment. J ACM. 1999;46(5):604–32. https://doi.org/10.1145/324133.324140.

    Article  MathSciNet  MATH  Google Scholar 

  117. Kloster K, Gleich DF. Heat kernel based community detection. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, vol. 24–27. New York, NY, USA - August; 2014. p. 1386–95. https://doi.org/10.1145/2623330.2623706.

  118. Kohlschütter C, Chirita P, Nejdl W. Efficient parallel computation of PageRank. In: Advances in Information Retrieval, 28th European Conference on IR Research, ECIR 2006, London, UK, April 10–12, 2006, Proceedings, pp. 241–252 (2006). https://doi.org/10.1007/11735106_22.

  119. Komninos A, Arampatzis A. Entity ranking as a search engine front-end. Int J AdvInternet Technol 2013;6(1):68–78. http://www.thinkmind.org/index.php?view=article& articleid=inttech_v6_n12_2013_6.

  120. Koumenides CL, Shadbolt NR. Combining link and content-based information in a Bayesian inference model for entity search. In: Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search—JIWES ’12, pp. 1–6 (2012). https://doi.org/10.1145/2379307.2379310.

  121. Lee-Kwang H, Lee K. Fuzzy hypergraph and fuzzy partition. IEEE Trans Syst Man Cybern. 1995;25(1):196–201. https://doi.org/10.1109/21.362951.

    Article  MathSciNet  MATH  Google Scholar 

  122. Leskovec J, Faloutsos C. Sampling from large graphs. In: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20–23, 2006, pp. 631–636 (2006). https://doi.org/10.1145/1150402.1150479.

  123. Li H. A short introduction to learning to rank. IEICE Trans Inform Syst. 2011;E94–D(10):1–2. https://doi.org/10.1587/transinf.E94.D.1.

  124. Li J, Zhang L, Yu Y. Learning to generate semantic annotation for domain specific sentences. In: Proceedings of the K-CAP 2001 Workshop on Knowledge Markup and Semantic Annotation Victoria, B.C., Canada, October 21, 2001 (2001). http://ceur-ws.org/Vol-99/Jianming_Li-et-al.pdf.

  125. Lin B, Rosa KD, Shah R, Agarwal N. LADS: Rapid development of a learning-to-rank based related entity finding system using open advancement. In: Proceedings of The First International Workshop on Entity-Oriented Search (EOS) (2011).

  126. Liu T. Learning to rank for information retrieval. Springer. 2011. https://doi.org/10.1007/978-3-642-14267-3.

    Article  MATH  Google Scholar 

  127. Lloyd L, Kechagias D, Skiena S. Lydia: A system for large-scale news analysis. In: Consens MP, Navarro G (eds.) String Processing and Information Retrieval, 12th International Conference, SPIRE 2005, Buenos Aires, Argentina, November 2–4, 2005, Proceedings, Lecture Notes in Computer Science, vol. 3772, pp. 161–166. Springer (2005). https://doi.org/10.1007/11575832_18.

  128. López V, Sabou M, Motta E. Powermap: mapping the real semantic web on the fly. In: The Semantic Web—ISWC 2006, 5th International Semantic Web Conference, ISWC 2006, Athens, GA, USA, November 5–9, 2006, Proceedings, pp. 414–427 (2006). https://doi.org/10.1007/11926078_30.

  129. Louis A. Hypergraph markov operators, eigenvalues and approximation algorithms. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14–17, 2015, pp. 713–722 (2015). https://doi.org/10.1145/2746539.2746555.

  130. Lovász L, et al. Random walks on graphs: a survey. Comb Paul Erdos is Eighty. 1993;2(1):1–46.

    Google Scholar 

  131. Luhn HP. A statistical approach to mechanized encoding and searching of literary information. IBM J Res Dev. 1957;1(4):309–17. https://doi.org/10.1147/rd.14.0309.

    Article  MathSciNet  Google Scholar 

  132. Lv Y, Zhai C. Lower-bounding term frequency normalization. In: Proceedings of the 20th ACM Conference on Information and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October 24–28, 2011, pp. 7–16 (2011). https://doi.org/10.1145/2063576.2063584.

  133. Manning CD, Raghavan P, Schütze H. Introduction to information retrieval. Cambridge University Press. 2008. https://doi.org/10.1017/CBO9780511809071, https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf.

  134. McFee B, Lanckriet GRG. Hypergraph models of playlist dialects. In: Proceedings of the 13th International Society for Music Information Retrieval Conference, ISMIR 2012, Mosteiro S.Bento Da Vitória, Porto, Portugal, October 8–12, 2012, pp. 343–348 (2012). http://ismir2012.ismir.net/event/papers/343-ismir-2012.pdf.

  135. Menezes T, Roth C. Semantic hypergraphs. CoRR. abs/1908.10784 (2019). arxiv:1908.10784.

  136. Metzler D, Croft WB. A Markov random field model for term dependencies. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2005), p. 472 (2005). https://doi.org/10.1145/1076034.1076115.

  137. Metzler D, Kanungo T. Machine learned sentence selection strategies for query-biased summarization. In: Proceedings of SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR), held in conjunction with the 31th Annual International ACM SIGIR Conference, pp. 40–47. Singapore (2008).

  138. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5–8, 2013, Lake Tahoe, Nevada, United States., pp. 3111–3119 (2013). http://papers.nips.cc/paper/5021-distributed- representations-of-words-and-phrases-and-their- compositionality.

  139. Minkov E, Cohen WW. Improving graph-walk-based similarity with reranking: case studies for personal information management. ACM Trans Inf Syst. 2010;29(1):4–52. https://doi.org/10.1145/1877766.1877770.

    Article  Google Scholar 

  140. Moro A, Raganato A, Navigli R. Entity linking meets word sense disambiguation: a unified approach. Trans Assoc Comput. Linguist 2014;2:231–244 (2014). https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/ view/291.

  141. Musto C, Semeraro G, de Gemmis M, Lops P. Tuning personalized PageRank for semantics-aware recommendations based on linked open data. In: The Semantic Web—14th International Conference, ESWC 2017, Portorož, Slovenia, May 28–June 1, 2017, Proceedings, Part I, pp. 169–183 (2017). https://doi.org/10.1007/978-3-319-58068-5_11.

  142. Neumayer R, Balog K, Nørvåg K. On the modeling of entities for ad-hoc entity search in the web of data. In: Advances in Information Retrieval - 34th European Conference on IR Research, ECIR 2012, Barcelona, Spain, April 1–5, 2012. Proceedings, pp. 133–145 (2012). https://doi.org/10.1007/978-3-642-28997-2_12.

  143. Ni Y, Xu QK, Cao F, Mass Y, Sheinwald D, Zhu HJ, Cao SS. In: Semantic documents relatedness using concept graph representation, vol. ’16. New York, New York, USA: ACM Press; 2016. p. 635–44. https://doi.org/10.1145/2835776.2835801.

  144. Nickel M, Tresp V, Kriegel H. A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28–July 2, 2011, pp. 809–816 (2011). https://icml.cc/2011/papers/438_icmlpaper.pdf.

  145. Nie Z, Wen J, Ma W. Object-level vertical search. In: CIDR 2007, Third Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 7–10, 2007, Online Proceedings, pp. 235–246 (2007). http://cidrdb.org/cidr2007/papers/cidr07p26.pdf.

  146. Nie Z, Zhang Y, Wen J, Ma W. Object-level ranking: bringing order to web objects. In: Proceedings of the 14th International Conference on World Wide Web, WWW 2005, Chiba, Japan, May 10–14, 2005, pp. 567–574 (2005). https://doi.org/10.1145/1060745.1060828.

  147. Nikolov P, Galabov V. Markov process simulation on a real quantum computer. Proceedings of the 45th International Conference on Application of Mathematics in Engineering and Economics (AMEE 2019) (2019). https://doi.org/10.1063/1.5133584.

  148. Ouvrard X, Goff JL, Marchand-Maillet S. Adjacency and tensor representation in general hypergraphs part 1: e-adjacency tensor uniformisation using homogeneous polynomials. CoRR. abs/1712.08189 (2017).

  149. Ouvrard X, Goff JL, Marchand-Maillet S. Adjacency and tensor representation in general hypergraphs.part 2: Multisets, hb-graphs and related e-adjacency tensors. CoRR. arxiv:abs/1805.11952 (2018).

  150. Oza P, Dietz L. Which entities are relevant for the story? In: R. Campos, A.M. Jorge, A. Jatowt, S. Bhatia, M.A. Finlayson (eds.) Proceedings of Text2Story - Fourth Workshop on Narrative Extraction From Texts held in conjunction with the 43rd European Conference on Information Retrieval (ECIR 2021), Lucca, Italy, April 1, 2021 (online event due to Covid-19 outbreak), CEUR Workshop Proceedings, vol. 2860, pp. 41–48. CEUR-WS.org (2021). http://ceur-ws.org/Vol-2860/paper5.pdf

  151. Page L. PageRank: Bringing order to the web. Tech. rep., Stanford Digital Libraries Working Paper (1997). http://www.diglib.stanford.edu/diglib/WP/PUBLIC/DOC159.html.

  152. Page L, Brin S, Motwani R, Winograd T. The pagerank citation ranking: bringing order to the web. Technical Report 1999-66, Stanford InfoLab (1999). https://www.ilpubs.stanford.edu:8090/422/. Previous number = SIDL-WP-1999-0120.

  153. Pons P, Latapy M. Computing communities in large networks using random walks. J Graph Algorithms Appl. 2006;10(2):191–218 (jgaa.info/accepted/2006/PonsLatapy2006.10.2.pdf).

  154. Ponte JM, Croft WB. A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, August 24–28 1998, Melbourne, Australia, pp. 275–281 (1998). https://doi.org/10.1145/290941.291008.

  155. Pound J, Mika P, Zaragoza H. Ad-hoc object retrieval in the web of data. In: Rappa M, Jones P, Freire J, Chakrabarti S (eds.) Proceedings of the 19th International Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26–30, 2010, pp. 771–780. ACM (2010). https://doi.org/10.1145/1772690.1772769.

  156. Qian R. Bing blogs: Understand your world with bing. https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/ (2013). Accessed 27 May 2019.

  157. Radlinski F, Kurup M, Joachims T. How does clickthrough data reflect retrieval quality? In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM ’08, pp. 43–52. ACM, New York, NY, USA (2008). https://doi.org/10.1145/1458082.1458092.

  158. Raviv H, Carmel D, Kurland O. A ranking framework for entity oriented search using Markov random fields. In: Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search (JIWES 2012), pp. 1–6 (2012). https://doi.org/10.1145/2379307.2379308.

  159. Raviv H, Kurland O, Carmel D. The cluster hypothesis for entity oriented search. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information etrieval (SIGIR 2013), p. 841 (2013). https://doi.org/10.1145/2484028.2484128.

  160. Reinanda R, Meij E, Pantony J, Dorando JJ. Related entity finding on highly-heterogeneous knowledge graphs. In: IEEE/ACM 2018 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2018, Barcelona, Spain, August 28–31, 2018, pp. 330–334 (2018). https://doi.org/10.1109/ASONAM.2018.8508650.

  161. van Rest F. A mathematical approach to scalable personalized PageRank. Bachelor thesis, Mathematisch Instituut, Universiteit Leiden (2009). https://www.math.leidenuniv.nl/scripties/vanRestBach.pdf.

  162. Richardson M, Domingos PM. Markov logic networks. Mach Learn. 2006;62(1–2):107–36. https://doi.org/10.1007/s10994-006-5833-1.

    Article  MATH  Google Scholar 

  163. Robertson SE, Walker S, Jones S, Hancock-Beaulieu M, Gatford M. Okapi at TREC-3. In: Harman DK (ed.) Proceedings of The Third Text REtrieval Conference, TREC 1994, Gaithersburg, Maryland, USA, November 2–4, 1994, NIST Special Publication, vol. 500–225, pp. 109–126. National Institute of Standards and Technology (NIST) (1994). http://trec.nist.gov/pubs/trec3/papers/city.ps.gz.

  164. Robertson SE, Zaragoza H. The probabilistic relevance framework: BM25 and beyond. Found Trends Inform Retr. 2009;3(4):333–89. https://doi.org/10.1561/1500000019.

    Article  Google Scholar 

  165. Rousseau F, Vazirgiannis M. Graph-of-word and TW-IDF: new approach to ad hoc IR. In: He Q, Iyengar A, Nejd W, Pei J, Rastogi R (eds.) 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27–November 1, 2013, pp. 59–68. ACM (2013). https://doi.org/10.1145/2505515.2505671.

  166. Saerens M, Fouss F. HITS is principal components analysis. In: 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2005), 19–22 September 2005, Compiegne, France, pp. 782–785 (2005). https://doi.org/10.1109/WI.2005.71.

  167. Sang EFTK, Meulder FD. Introduction to the conll-2003 shared task: Language-independent named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning, CoNLL 2003, Held in cooperation with HLT-NAACL 2003, Edmonton, Canada, May 31–June 1, 2003, pp. 142–147 (2003). http://aclweb.org/anthology/W/W03/W03-0419.pdf.

  168. Sarma AD, Nanongkai D, Pandurangan G, Tetali P. Distributed random walks. J ACM. 2013;60(1):2–31. https://doi.org/10.1145/2432622.2432624.

    Article  MathSciNet  MATH  Google Scholar 

  169. Schenkel R, Suchanek FM, Kasneci G. YAWN: A semantically annotated wikipedia XML corpus. In: Datenbanksysteme in Business, Technologie und Web (BTW 2007), 12. Fachtagung des GI-Fachbereichs “Datenbanken und Informationssysteme” (DBIS), Proceedings, 7.–9. März 2007, Aachen, Germany, pp. 277–291 (2007). http://subs.emis.de/LNI/Proceedings/Proceedings103/ article1404.html.

  170. Schuhmacher M, Dietz L, Ponzetto SP. Ranking entities for web queries through text and knowledge. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management, CIKM 2015, Melbourne, VIC, Australia, October 19–23, 2015, pp. 1461–1470 (2015). https://doi.org/10.1145/2806416.2806480.

  171. Shen W, Wang J, Han J. Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans Knowl Data Eng. 2015;27(2):443–60. https://doi.org/10.1109/TKDE.2014.2327028.

    Article  Google Scholar 

  172. Singhal A. Official google blog: Introducing the knowledge graph: things, not strings. https://googleblog.blogspot.pt/2012/05/introducing-knowledge-graph-things-not.html (2012). Accessed on 11 Apr 2017.

  173. Singhal A, Buckley C, Mitra M. Pivoted document length normalization. In: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’96, August 18–22, 1996, Zurich, Switzerland (Special Issue of the SIGIR Forum), pp. 21–29 (1996). https://doi.org/10.1145/243199.243206.

  174. Singhal A, Salton G, Mitra M, Buckley C. Document length normalization. Inf Process Manag. 1996;32(5):619–33. https://doi.org/10.1016/0306-4573(96)00008-8.

    Article  Google Scholar 

  175. Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu BP, Wang K. An overview of microsoft academic service (MAS) and applications. In: Gangemi A, Leonardi S, Panconesi A (eds.) Proceedings of the 24th International Conference on World Wide Web Companion, WWW 2015, Florence, Italy, May 18–22, 2015—Companion Volume, pp. 243–246. ACM (2015). https://doi.org/10.1145/2740908.2742839.

  176. Sordoni A, Nie J, Bengio Y. Modeling term dependencies with quantum language models for IR. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’13, Dublin, Ireland—July 28–August 01, 2013, pp. 653–662 (2013). https://doi.org/10.1145/2484028.2484098.

  177. Sowa JF. Conceptual structures: information processing in mind and machine. Boston: Addison-Wesley; 1984.

    MATH  Google Scholar 

  178. Suchanek FM, Kasneci G, Weikum G. YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8–12, 2007, pp. 697–706 (2007). https://doi.org/10.1145/1242572.1242667.

  179. Tan S, Bu J, Chen C, Xu B, Wang C, He X. Using rich social media information for music recommendation via hypergraph model. TOMCCAP. 2011;7(Supplement):22. https://doi.org/10.1145/2037676.2037679.

    Article  Google Scholar 

  180. Theodoridis A, Kotropoulos C, Panagakis Y. Music recommendation using hypergraphs and group sparsity. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26–31, 2013, pp. 56–60 (2013). https://doi.org/10.1109/ICASSP.2013.6637608.

  181. Tonon A, Catasta M, Prokofyev R, Demartini G, Aberer K, Cudré-Mauroux P. Contextualized ranking of entity types based on knowledge graphs. J Web Semant. 2016;37–38:170–83. https://doi.org/10.1016/j.websem.2015.12.005.

    Article  Google Scholar 

  182. Tonon A, Demartini G, Cudré-Mauroux P. Combining inverted indices and structured search for ad-hoc object retrieval. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, Portland, OR, USA, August 12–16, 2012, pp. 125–134 (2012). https://doi.org/10.1145/2348283.2348304.

  183. Tran T, Mika P, Wang H, Grobelnik M. Semsearch’11: the 4th semantic search workshop. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28–April 1, 2011 (Companion Volume), pp. 315–316 (2011). https://doi.org/10.1145/1963192.1963329.

  184. Turtle HR, Croft WB. Evaluation of an inference network-based retrieval model. ACM Trans Inform Syst. 1991;9(3):187–222. https://doi.org/10.1145/125187.125188.

    Article  Google Scholar 

  185. Urbain J. User-driven relational models for entity-relation search and extraction. In: Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search, JIWES ’12. Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2379307.2379312.

  186. Van T, Beigbeder M. Web co-citation: Discovering relatedness between scientific papers. In: Advances in Intelligent Web Mastering, Proceedings of the 5th Atlantic Web Intelligence Conference—AWIC 2007, Fontainebleau, France, June 25–27, 2007, pp. 343–348 (2007). https://doi.org/10.1007/978-3-540-72575-6_55.

  187. Voorhees EM. TREC: continuing information retrieval’s tradition of experimentation. Commun ACM. 2007;50(11):51–4. https://doi.org/10.1145/1297797.1297822.

    Article  Google Scholar 

  188. de Vries AP, Vercoustre A, Thom JA, Craswell N, Lalmas M. Overview of the INEX 2007 entity ranking track. In: Focused Access to XML Documents, 6th International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2007, Dagstuhl Castle, Germany, December 17–19, 2007. Selected Papers, pp. 245–251 (2007). https://doi.org/10.1007/978-3-540-85902-4_22.

  189. Waitelonis J, Exeler C, Sack H. Linked data enabled generalized vector space model to improve document retrieval. In: Paulheim H, van Erp M, Filipowska A, Mendes PN, Brümmer M (eds.) Proceedings of the Third NLP&DBpedia Workshop (NLP & DBpedia 2015), co-located with the 14th International Semantic Web Conference 2015 (ISWC 2015), vol. 1581, pp. 34–44. CEUR, Bethlehem, Pennsylvania, USA (2015). http://ceur-ws.org/Vol-1581/paper4.pdf.

  190. Wang X, Tao T, Sun J, Shakery A, Zhai C. DirichletRank: solving the zero-one gap problem of PageRank. ACM Trans Inform Syst. 2008;26(2):10–29. https://doi.org/10.1145/1344411.1344416.

    Article  Google Scholar 

  191. Wicks JR, Greenwald A. More efficient parallel computation of PageRank. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, July 23–27, 2007, pp. 861–862 (2007). https://doi.org/10.1145/1277741.1277946.

  192. Xiong C, Liu Z, Callan J, Hovy EH. Jointsem: Combining query entity linking and entity based document ranking. In: Lim E, Winslett M, Sanderson M, Fu AW, Sun J, Culpepper JS, Lo E, Ho JC, Donato D, Agrawal R, Zheng Y, Castillo C, Sun A, Tseng VS, Li C (eds.) Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore, November 06–10, 2017, pp. 2391–2394. ACM (2017). https://doi.org/10.1145/3132847.3133048.

  193. Xiong S, Ji D. Query-focused multi-document summarization using hypergraph-based ranking. Inf Process Manag. 2016;52(4):670–81. https://doi.org/10.1016/j.ipm.2015.12.012.

    Article  Google Scholar 

  194. Yang R, Xiao X, Wei Z, Bhowmick SS, Zhao J, Li R. Efficient estimation of heat kernel pagerank for local clustering. In: Proceedings of the 2019 International Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30–July 5, 2019, pp. 1339–1356 (2019). https://doi.org/10.1145/3299869.3319886.

  195. Yeh E, Ramage D, Manning CD, Agirre E, Soroa A. Wikiwalk: Random walks on wikipedia for semantic relatedness. In: Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing, August 7, 2009, Singapore, pp. 41–49. The Association for Computer Linguistics (2009). https://www.aclweb.org/anthology/W09-3206/.

  196. Yi M. Information organization and retrieval using a topic maps-based ontology: results of a task-based evaluation. JASIST. 2008;59(12):1898–911. https://doi.org/10.1002/asi.20899.

    Article  Google Scholar 

  197. Yilmaz E, Aslam JA. Estimating average precision with incomplete and imperfect judgments. In: Proceedings of the 2006 ACM CIKM International Conference on Information and Knowledge Management, Arlington, Virginia, USA, November 6–11, 2006, pp. 102–111 (2006). https://doi.org/10.1145/1183614.1183633.

  198. Zhang Z, Wang L, Xie X, Pan H. A graph based document retrieval method. In: 22nd IEEE International Conference on Computer Supported Cooperative Work in Design, CSCWD 2018, Nanjing, China, May 9–11, 2018, pp. 426–432 (2018). https://doi.org/10.1109/CSCWD.2018.8465295.

  199. Zhiltsov N, Agichtein E. Improving entity search over linked data by modeling latent semantics. In: 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27–November 1, 2013, pp. 1253–1256 (2013). https://doi.org/10.1145/2505515.2507868.

  200. Zhong J, Zhu H, Li J, Yu Y. Conceptual graph matching for semantic search. In: U. Priss, D. Corbett, G. Angelova (eds.) Conceptual Structures: Integration and Interfaces, 10th International Conference on Conceptual Structures, ICCS 2002, Borovets, Bulgaria, July 15–19, 2002, Proceedings, Lecture Notes in Computer Science, vol. 2393, pp. 92–196. Springer (2002). https://doi.org/10.1007/3-540-45483-7_8.

  201. Zhong M, Liu M. Ranking the answer trees of graph search by both structure and content. In: Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search, pp. 1–3. Association for Computing Machinery, New York, NY, USA, Portland, OR, USA (2012). https://doi.org/10.1145/2379307.2379314.

  202. Zhou M. Entity-centric search: querying by entities and for entities. Ph.D. thesis, University of Illinois at Urbana-Champaign (2014). http://hdl.handle.net/2142/72748.

  203. Zhu H, Zhong J, Li J, Yu Y. An approach for semantic search by matching RDF graphs. In: Haller SM, Simmons G (eds.) Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference, May 14–16, 2002, Pensacola Beach, Florida, USA, pp. 450–454. AAAI Press (2002). http://www.aaai.org/Library/FLAIRS/2002/flairs02-088.php.

  204. Zhu J, Song D, Rüger SM. Integrating document features for entity ranking. In: Focused Access to XML Documents, 6th International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2007, Dagstuhl Castle, Germany, December 17–19, 2007. Selected Papers, pp. 336–347 (2007). https://doi.org/10.1007/978-3-540-85902-4_29.

  205. Zhu Y, Yan E, Song I. A natural language interface to a graph-based bibliographic information retrieval system. Data Knowl Eng. 2017;111:73–89. https://doi.org/10.1016/j.datak.2017.06.006.

    Article  Google Scholar 

  206. Zou X. A survey on application of knowledge graph. J Phys Conf Ser. 2020;1487: 012016. https://doi.org/10.1088/1742-6596/1487/1/012016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Devezas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

José Devezas is supported by research grant PD/BD/128160/2016, provided by the Portuguese national funding agency for science, research and technology, Fundação para a Ciência e a Tecnologia (FCT), within the scope of Operational Program Human Capital (POCH), supported by the European Social Fund and by national funds from MCTES.

A Overview of entity-oriented search approaches and tasks

A Overview of entity-oriented search approaches and tasks

See Table 2, 3, 4.

Table 2 Classical information retrieval models applied to entity-oriented search
Table 3 Learning to rank models for entity-oriented search
Table 4 Graph-based models for entity-oriented search

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devezas, J., Nunes, S. A Review of Graph-Based Models for Entity-Oriented Search. SN COMPUT. SCI. 2, 437 (2021). https://doi.org/10.1007/s42979-021-00828-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00828-w

Keywords

Navigation