Skip to main content

Advertisement

Log in

Community Detection in Complex Networks Using Link Strength-Based Hybrid Genetic Algorithm

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Communities have proven to be one of the important topological features of complex networks and can be discovered in various aspects of life. Understanding these community structures help the researchers to unlock distinct characteristics of networks that are not visible otherwise. In this paper, a hybrid genetic algorithm with link strength-based local search strategy (HGALS) is proposed for solving the community detection problem. The local search method presented in the algorithm is faster than the traditional modularity-based search operations. Furthermore, different variants of link strength measures are used in the local search method that is useful for various types of complex networks. The HGALS algorithm is analysed using different community structure metrics and its outcome is compared with three evolutionary algorithms and seven non-evolutionary algorithm-based approaches. The results thus obtained from the comparisons with other algorithms show good performances of HGALS in most of the cases for identifying better community structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5(2):101.

    Google Scholar 

  2. Girvan M, Newman MEJ. Community structure in social and biological networks. Proc Natl Acad Sci. 2002;99(12):7821.

    MathSciNet  MATH  Google Scholar 

  3. Palla G, Barabási AL, Vicsek T. Quantifying social group evolution. Nature. 2007;446(7136):664.

    Google Scholar 

  4. Wang X, Liu G, Li J. Overlapping community detection based on structural centrality in complex networks. IEEE Access. 2017;5:25258.

    Google Scholar 

  5. Rezaeimehr F, Moradi P, Ahmadian S, Qader NN, Jalili M. Tcars: Time- and community-aware recommendation system. Future Gener Comput Syst. 2018;78:419.

    Google Scholar 

  6. Moradi P, Ahmadian S, Akhlaghian F. An effective trust-based recommendation method using a novel graph clustering algorithm. Phys A Stat Mech Appl. 2015;436:462.

    Google Scholar 

  7. Wang Z, Wu Y, Li Q, Jin F, Xiong W. Link prediction based on hyperbolic mapping with community structure for complex networks. Phys A Stat Mech Appl. 2016;450:609.

    Google Scholar 

  8. Cantini L, Medico E, Fortunato S, Caselle M. Detection of gene communities in multi-networks reveals cancer drivers. Sci Rep. 2015;5:17386.

    Google Scholar 

  9. Remy C, Rym B, Matthieu L. Complex networks and their applications VI. Cham: Springer International Publishing; 2018. p. 166–77.

    Google Scholar 

  10. Naeni LM, Berretta R, Moscato P. In: Proceedings of the 18th Asia Pacific symposium on intelligent and evolutionary systems, volume 1, Handa H, Ishibuchi H, Ong YS, Tan KC editors. Cham: Springer International Publishing; 2015, p. 311–323.

  11. Newman ME. Modularity and community structure in networks. Proc Natl Acad Sci. 2006;103(23):8577.

    Google Scholar 

  12. Shang R, Bai J, Jiao L, Jin C. Community detection based on modularity and an improved genetic algorithm. Phys A Stat Mech Appl. 2013;392(5):1215.

    Google Scholar 

  13. Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E. 2007;76:036106.

    Google Scholar 

  14. Barber MJ, Clark JW. Detecting network communities by propagating labels under constraints. Phys Rev E. 2009;80:026129.

    Google Scholar 

  15. Šubelj L, Bajec M. Unfolding communities in large complex networks: combining defensive and offensive label propagation for core extraction. Phys Rev E. 2011;83:036103.

    MathSciNet  Google Scholar 

  16. Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci. 2008;105(4):1118.

    Google Scholar 

  17. Rosvall M, Bergstrom CT. An information-theoretic framework for resolving community structure in complex networks. Proc Natl Acad Sci. 2007;104(18):7327.

    Google Scholar 

  18. Hajek B, Wu Y, Xu J. Information limits for recovering a hidden community. IEEE Trans Inf Theory. 2017;63(8):4729.

    MathSciNet  MATH  Google Scholar 

  19. Binesh N, Rezghi M. Fuzzy clustering in community detection based on nonnegative matrix factorization with two novel evaluation criteria. Appl Soft Comput. 2018;69:689.

    Google Scholar 

  20. Ma X, Dong D. Evolutionary nonnegative matrix factorization algorithms for community detection in dynamic networks. IEEE Trans Knowl Data Eng. 2017;29(5):1045.

    Google Scholar 

  21. Fortunato S. Community detection in graphs. Phys Rep. 2010;486(3):75.

    MathSciNet  Google Scholar 

  22. Yang Z, Algesheimer R, Tessone CJ. A comparative analysis of community detection algorithms on artificial networks. Sci Rep. 2016;6:30750.

    Google Scholar 

  23. Chakraborty T, Dalmia A, Mukherjee A, Ganguly N. Metrics for community analysis: a survey. ACM Comput Surv (CSUR). 2017;50(4):1.

    Google Scholar 

  24. Handl J, Knowles J. An evolutionary approach to multiobjective clustering. IEEE Trans Evol Comput. 2007;11(1):56.

    Google Scholar 

  25. Guerrero M, Montoya FG, Baños R, Alcayde A, Gil C. Adaptive community detection in complex networks using genetic algorithms. Neurocomputing. 2017;266:101.

    Google Scholar 

  26. Said A, Abbasi RA, Maqbool O, Daud A, Aljohani NR. CC-GA: A clustering coefficient based genetic algorithm for detecting communities in social networks. Appl Soft Comput. 2018;63:59.

    Google Scholar 

  27. Rahimi S, Abdollahpouri A, Moradi P. A multi-objective particle swarm optimization algorithm for community detection in complex networks. Swarm Evol Comput. 2018;39:297.

    Google Scholar 

  28. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182.

    Google Scholar 

  29. Zhou X, Zhao X, Liu Y. A multiobjective discrete bat algorithm for community detection in dynamic networks. Appl Intell. 2018;48(9):3081.

    Google Scholar 

  30. Moscato P, et al. On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms, Caltech concurrent computation program. C3P Report. 1989;826:1989.

    Google Scholar 

  31. Žalik KR, Žalik B. Memetic algorithm using node entropy and partition entropy for community detection in networks. Inf Sci. 2018;445–446:38.

    MathSciNet  Google Scholar 

  32. Li M, Liu J. A link clustering based memetic algorithm for overlapping community detection. Phys A Stat Mech Appl. 2018;503:410.

    Google Scholar 

  33. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004;69:026113.

    Google Scholar 

  34. Moradi M, Parsa S. An evolutionary method for community detection using a novel local search strategy. Phys A Stat Mech Appl. 2019;523:457.

    Google Scholar 

  35. Ma L, Gong M, Liu J, Cai Q, Jiao L. Multi-level learning based memetic algorithm for community detection. Appl Soft Comput. 2014;19:121.

    Google Scholar 

  36. Michael JH. Labor dispute reconciliation in a forest products manufacturing facility. For Prod J. 1997;47(11/12):41.

    Google Scholar 

  37. De Nooy W, Mrvar A, Batagelj V. Exploratory social network analysis with Pajek: revised and expanded edition for updated software, vol. 46. Cambridge: Cambridge University Press; 2018.

    Google Scholar 

  38. Zachary WW. An information flow model for conflict and fission in small groups. J Anthropol Res. 1977;33(4):452.

    Google Scholar 

  39. Michael JH, Massey JG. Modeling the communication network in a sawmill. For Prod J. 1997;47(9):25.

    Google Scholar 

  40. Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM. The bottlenose dolphin community of Doubtful sound features a large proportion of long-lasting associations. Behav Ecol Sociobiol. 2003;54(4):396.

    Google Scholar 

  41. Knuth DE. The Stanford GraphBase: a platform for combinatorial computing. New York: AcM Press; 1993.

    MATH  Google Scholar 

  42. Krebs V. Proxy networks analyzing one network to reveal another. Bull Sociol Methodol. 2003;79:61.

    Google Scholar 

  43. Newman MEJ. Finding community structure in networks using the eigenvectors of matrices. Phys Rev E. 2006;74:036104.

    MathSciNet  Google Scholar 

  44. Gleiser PM, Danon L. Community structure in jazz. Adv Complex Syst. 2003;06(04):565.

    Google Scholar 

  45. Beuming T, Skrabanek L, Niv MY, Mukherjee P, Weinstein H. PDZBase: a protein–protein interaction database for PDZ-domains. Bioinformatics. 2004;21(6):827.

    Google Scholar 

  46. Pdzbase network dataset—KONECT (2017). http://konect.uni-koblenz.de/networks/maayan-pdzbase

  47. Guimerà Manrique R, Danon L, Díaz Guilera A, Giralt F, Arenas À. Self-similar community structure in a network of human interactions. Phys Rev E. 2003;68(6):065103.

    Google Scholar 

  48. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms. Phys Rev E. 2008;78:046110.

    Google Scholar 

  49. Bilal S, Abdelouahab M. Evolutionary algorithm and modularity for detecting communities in networks. Phys A Stat Mech Appl. 2017;473:89.

    MATH  Google Scholar 

  50. Tasgin M, Herdagdelen A, Bingol H. Community detection in complex networks using genetic algorithms; 2007.

  51. Rosvall M, Axelsson D, Bergstrom CT. The map equation. Eur Phys J Spec Top. 2009;178(1):13.

    Google Scholar 

  52. Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E. 2004;70:066111.

    Google Scholar 

  53. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008;2008(10):P10008.

    MATH  Google Scholar 

  54. Pons P, Latapy M. In: p. Yolum, T. Güngör, F. Gürgen, C. Özturan, editor. Computer and Information Sciences—ISCIS 2005. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2005. p. 284–93.

  55. Fortunato S, Barthélemy M. Resolution limit in community detection. Proc Natl Acad Sci. 2007;104(1):36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepanshu Malhotra.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhotra, D. Community Detection in Complex Networks Using Link Strength-Based Hybrid Genetic Algorithm. SN COMPUT. SCI. 2, 9 (2021). https://doi.org/10.1007/s42979-020-00389-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00389-4

Keywords

Navigation