Skip to main content

Advertisement

Log in

An Overview of Non-exercise Estimated Cardiorespiratory Fitness: Estimation Equations, Cross-Validation and Application

  • Review article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

To summarize current non-exercise prediction models to estimate cardiorespiratory fitness (CRF), cross-validate these models, and apply them to predict health outcomes.

Methods

PubMed search was up to August 2018 for eligible publications. The current review was comprised of three steps. The first step was to search the literature on non-exercise prediction models. The key words combined non-exercise, CRF and one among prediction, prediction model, equation, prediction equation and measurement. The second step was to search the literature about cross-validation of non-exercise equations. The key words included non-exercise, CRF and one among validation, cross-validation and validity. The last step was to search for application of CRF assessed from non-exercise equations. The key words were non-exercise, CRF, mortality, all-cause mortality, cardiovascular disease (CVD) mortality and cancer mortality.

Results

Sixty non-exercise equations were identified. Age, gender, percent body fat, body mass index, weight, height and physical activity status were commonly used in the equations. Several researchers cross-validated non-exercise equations and proved their validity. In addition, non-exercise estimated CRF was significantly associated with all-cause mortality and fatal and nonfatal CVD.

Conclusions

Measurement of CRF from non-exercise models is practical and viable when exercise testing is not feasible. Despite the limitations of equations, application of CRF from non-exercise methods showed accuracy and predictive ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ross R, Blair SN, Arena R, Church TS, Després J-P, Franklin BA, Haskell WL, Kaminsky LA, Levine BD, Lavie CJ. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134:653–99.

    Article  Google Scholar 

  2. Blair SN, Kampert JB, Kohl HW, Barlow CE, Macera CA, Paffenbarger RS, Gibbons LW. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA. 1996;276:205–10.

    Article  CAS  Google Scholar 

  3. Erikssen G, Liestøl K, Bjørnholt J, Thaulow E, Sandvik L, Erikssen J. Changes in physical fitness and changes in mortality. Lancet. 1998;352:759–62.

    Article  CAS  Google Scholar 

  4. Sandvik L, Erikssen J, Thaulow E, Erikssen G, Mundal R, Rodahl K. Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men. N Engl J Med. 1993;328:533–7.

    Article  CAS  Google Scholar 

  5. Farrell SW, Kampert JB, Kohl HW, Barlow CE, Macera CA, Paffenbarger RS Jr, Gibbons LW, Blair SN. Influences of cardiorespiratory fitness levels and other predictors on cardiovascular disease mortality in men. Med Sci Sports Exerc. 1998;30:899–905.

    CAS  PubMed  Google Scholar 

  6. Wei M, Kampert JB, Barlow CE, Nichaman MZ, Gibbons LW, Paffenbarger RS Jr, Blair SN. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA. 1999;282:1547–53.

    Article  CAS  Google Scholar 

  7. Farrell SW, Cortese GM, LaMonte MJ, Blair SN. Cardiorespiratory fitness, different measures of adiposity, and cancer mortality in men. Obesity. 2007;15:3140–9.

    Article  Google Scholar 

  8. Farrell SW, Finley CE, McAuley PA, Frierson GM. Cardiorespiratory fitness, different measures of adiposity, and total cancer mortality in women. Obesity. 2011;19:2261–7.

    Article  Google Scholar 

  9. Thompson AM, Church TS, Janssen I, Katzmarzyk PT, Earnest CP, Blair SN. Cardiorespiratory fitness as a predictor of cancer mortality among men with pre-diabetes and diabetes. Diabetes Care. 2008;31:764–9.

    Article  Google Scholar 

  10. Anderssen SA, Cooper AR, Riddoch C, Sardinha LB, Harro M, Brage S, Andersen LB. Low cardiorespiratory fitness is a strong predictor for clustering of cardiovascular disease risk factors in children independent of country, age and sex. Eur J Cardiovasc Prev Rehabil. 2007;14:526–31.

    Article  Google Scholar 

  11. Carnethon MR, Gulati M, Greenland P. Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults. JAMA. 2005;294:2981–8.

    Article  CAS  Google Scholar 

  12. Hurtig-Wennlöf A, Ruiz JR, Harro M, Sjöström M. Cardiorespiratory fitness relates more strongly than physical activity to cardiovascular disease risk factors in healthy children and adolescents: the European Youth Heart Study. Eur J Cardiovasc Prev Rehabil. 2007;14:575–81.

    Article  Google Scholar 

  13. Barlow CE, LaMonte MJ, FitzGerald SJ, Kampert JB, Perrin JL, Blair SN. Cardiorespiratory fitness is an independent predictor of hypertension incidence among initially normotensive healthy women. Am J Epidemiol. 2006;163:142–50.

    Article  Google Scholar 

  14. Laaksonen DE, Lakka H-M, Salonen JT, Niskanen LK, Rauramaa R, Lakka TA. Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome. Diabetes Care. 2002;25:1612–8.

    Article  Google Scholar 

  15. Sawada SS, Lee I-M, Muto T, Matuszaki K, Blair SN. Cardiorespiratory fitness and the incidence of type 2 diabetes. Diabetes Care. 2003;26:2918–22.

    Article  Google Scholar 

  16. Foster C, Jackson AS, Pollock ML, Taylor MM, Hare J, Sennett SM, Rod JL, Sarwar M, Schmidt DH. Generalized equations for predicting functional capacity from treadmill performance. Am Heart J. 1984;107:1229–34.

    Article  CAS  Google Scholar 

  17. Mitchell JH, Sproule BJ, Chapman CB. The physiological meaning of the maximal oxygen intake test. J Clin Invest. 1958;37:538.

    Article  CAS  Google Scholar 

  18. Taylor HL, Buskirk E, Henschel A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol. 1955;8:73–80.

    Article  CAS  Google Scholar 

  19. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. Baltimore: Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  20. Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J. 1973;85:546–62.

    Article  CAS  Google Scholar 

  21. Pollock ML, Bohannon RL, Cooper KH, Ayres JJ, Ward A, White SR, Linnerud A. A comparative analysis of four protocols for maximal treadmill stress testing. Am Heart J. 1976;92:39–46.

    Article  CAS  Google Scholar 

  22. Pollock ML, Foster C, Schmidt D, Hellman C, Linnerud A, Ward A. Comparative analysis of physiologic responses to three different maximal graded exercise test protocols in healthy women. Am Heart J. 1982;103:363–73.

    Article  CAS  Google Scholar 

  23. Kaminsky LA, Whaley MH. Evaluation of a new standardized ramp protocol: the BSU/Bruce Ramp protocol. J Cardiopulm Rehabil Prev. 1998;18:438–44.

    Article  CAS  Google Scholar 

  24. Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Hamilton-Wessler M, Froelicher VF. Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol. 1991;17:1334–42.

    Article  CAS  Google Scholar 

  25. Noonan V, Dean E. Submaximal exercise testing: clinical application and interpretation. Phys Ther. 2000;80:782–807.

    CAS  PubMed  Google Scholar 

  26. Kline GM, Porcari JP, Hintermeister R, Freedson PS, Ward A, Mccarron RF, Ross J, Rippe JM. Estimation of VO2max from a one-mile track walk, gender, age, and body weight. Med Sci Sports Exerc. 1987;19:253–9.

    Article  CAS  Google Scholar 

  27. American Thoracic Society. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–7.

    Article  Google Scholar 

  28. Jones N, Makrides L, Hitchcock C, Chypchar T, McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985;131:700–8.

    CAS  PubMed  Google Scholar 

  29. Ainsworth B, Richardson M, Jacobs D, Leon A. Prediction of cardiorespiratory fitness using physical-activity questionnaire data. Res Q Exerc Sport. 1992;63:75–82.

    Google Scholar 

  30. Bradshaw DI, George JD, Hyde A, LaMonte MJ, Vehrs PR, Hager RL, Yanowitz FG. An accurate VO2max nonexercise regression model for 18–65-year-old adults. Res Q Exerc Sport. 2005;76:426–32.

    Article  Google Scholar 

  31. Cao ZB, Miyatake N, Higuchi M, Ishikawa-Takata K, Miyachi M, Tabata I. Prediction of VO2max with daily step counts for Japanese adult women. Eur J Appl Physiol. 2009;105:289–96.

    Article  Google Scholar 

  32. Cao ZB, Miyatake N, Higuchi M, Miyachi M, Ishikawa-Takata K, Tabata I. Predicting VO2max with an objectively measured physical activity in Japanese women. Med Sci Sports Exerc. 2010;42:179–86.

    Article  Google Scholar 

  33. Cao ZB, Miyatake N, Higuchi M, Miyachi M, Tabata I. Predicting VO2max with an objectively measured physical activity in Japanese men. Eur J Appl Physiol. 2010;109:465–72.

    Article  Google Scholar 

  34. Cooper CB, Storer TW. Exercise testing and interpretation: a practical approach. Cambridge: Cambridge University Press; 2001.

    Book  Google Scholar 

  35. Daneshmandi H, Fard AR, Choobineh A. Estimation of aerobic capacity and determination of its associated factors among male workers of industrial sector of Iran. Int J Occup Saf Ergon. 2013;19:667–73.

    Article  Google Scholar 

  36. Davis JA, Storer TW, Caiozzo VJ, Pham PH. Lower reference limit for maximal oxygen uptake in men and women. Clin Physiol Funct Imaging. 2002;22:332–8.

    Article  Google Scholar 

  37. Fairbarn MS, Blackie SP, McElvaney NG, Wiggs BR, Pare PD, Pardy RL. Prediction of heart rate and oxygen uptake during incremental and maximal exercise in healthy adults. Chest. 1994;105:1365–9.

    Article  CAS  Google Scholar 

  38. George JD, Stone WJ, Burkett LN. Non-exercise VO2max estimation for physically active college students. Med Sci Sports Exerc. 1997;29:415–23.

    Article  CAS  Google Scholar 

  39. Heil DP, Freedson PS, Ahlquist LE, Price J, Rippe JM. Nonexercise regression models to estimate peak oxygen consumption. Med Sci Sports Exerc. 1995;27:599–606.

    CAS  PubMed  Google Scholar 

  40. Jackson AS, Blair SN, Mahar MT, Wier LT, Ross RM, Stuteville JE. Prediction of functional aerobic capacity without exercise testing. Med Sci Sports Exerc. 1990;22:863–70.

    Article  CAS  Google Scholar 

  41. Jackson AS, Sui X, O’Connor DP, Church TS, D-c Lee, Artero EG, Blair SN. Longitudinal cardiorespiratory fitness algorithms for clinical settings. Am J Prev Med. 2012;43:512–9.

    Article  Google Scholar 

  42. Jurca R, Jackson AS, LaMonte MJ, Morrow JR, Blair SN, Wareham NJ, Haskell WL, van Mechelen W, Church TS, Jakicic JM. Assessing cardiorespiratory fitness without performing exercise testing. Am J Prev Med. 2005;29:185–93.

    Article  Google Scholar 

  43. Malek M, Housh T, Berger D, Coburn J, Beck T. A new non-exercise-based VO2max prediction equation for aerobically trained men. J Strength Cond Res. 2005;19:559–65.

    PubMed  Google Scholar 

  44. Malek MH, Housh TJ, Berger DE, Coburn JW, Beck TW. A new nonexercise-based VO2max equation for aerobically trained females. Med Sci Sports Exerc. 2004;195:1804–10.

    Article  Google Scholar 

  45. Matthews CE, Heil DP, Freedson PS, Pastides H. Classification of cardiorespiratory fitness without exercise testing. Med Sci Sports Exerc. 1999;31:486–93.

    Article  CAS  Google Scholar 

  46. Neder JA, Nery LE, Castelo A, Andreoni S, Lerario MC, Sachs A, Silva ACd, Whipp B. Prediction of metabolic and cardiopulmonary responses to maximum cycle ergometry: a randomised study. Eur Respir J. 1999;14:1304–13.

    Article  CAS  Google Scholar 

  47. Nes BM, Janszky I, Vatten LJ, Nilsen TIL, Aspenes ST, Wisløff U. Estimating VO2peak from a nonexercise prediction model: the HUNT Study, Norway. Med Sci Sports Exerc. 2011;43:2024–30.

    Article  Google Scholar 

  48. Rexhepi AM, Brestovci B. Prediction of VO2max based on age, body mass, and resting heart rate. Human Mov. 2014;15:56–9.

    Google Scholar 

  49. Schembre SM, Riebe DA. Non-exercise estimation of VO2max using the international physical activity questionnaire. Meas Phys Educ Exerc Sci. 2011;15:168–81.

    Article  Google Scholar 

  50. Sloan RA, Haaland BA, Leung C, Padmanabhan U, Koh HC, Zee A. Cross-validation of a non-exercise measure for cardiorespiratory fitness in Singaporean adults. Singapore Med J. 2013;54:576–80.

    Article  Google Scholar 

  51. Wassermann K, Hansen J, Sue D, Whipp B. Principles of exercise testing and interpretation. Philadelphia: Lea & Febiger; 1994.

    Google Scholar 

  52. Whaley MH, Kaminsky LA, Dwyer GB, Getchell LH. Failure of predicted VO2peak to discriminate physical fitness in epidemiological studies. Med Sci Sports Exerc. 1995;27:85–91.

    CAS  PubMed  Google Scholar 

  53. Wier LT, Jackson AS, Ayers GW, Arenare B. Nonexercise models for estimating VO2max with waist girth, percent fat, or BMI. Med Sci Sports Exerc. 2006;38:555–61.

    Article  Google Scholar 

  54. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40:497–504.

    Article  CAS  Google Scholar 

  55. Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1979;12:175–81.

    Google Scholar 

  56. Williford HN, Scharff-Olson M, Wang N, Blessing DL, Smith FH, Duey WJ. Cross-validation of non-exercise predictions of VO2peak in women. Med Sci Sports Exerc. 1996;28:926–30.

    Article  CAS  Google Scholar 

  57. Kolkhorst FW, Dolgener FA. Nonexercise model fails to predict aerobic capacity in college students with high VO2peak. Res Q Exerc Sport. 1994;65:78–83.

    Article  CAS  Google Scholar 

  58. Mailey EL, White SM, Wójcicki TR, Szabo AN, Kramer AF, McAuley E. Construct validation of a non-exercise measure of cardiorespiratory fitness in older adults. BMC Public Health. 2010;10:59–66.

    Article  Google Scholar 

  59. Malek MH, Berger DE, Housh TJ, Coburn JW, Beck TW. Validity of VO2max equations for aerobically trained males and females. Med Sci Sports Exerc. 2004;36:1427–32.

    Article  Google Scholar 

  60. Stamatakis E, Hamer M, O’donovan G, Batty GD, Kivimaki M. A non-exercise testing method for estimating cardiorespiratory fitness: associations with all-cause and cardiovascular mortality in a pooled analysis of eight population-based cohorts. Eur Heart J. 2012;34:750–8.

    Article  Google Scholar 

  61. Nauman J, Nes BM, Lavie CJ, Jackson AS, Sui X, Coombes JS, Blair SN, Wisløff U. Prediction of cardiovascular mortality by estimated cardiorespiratory fitness independent of traditional risk factors: the HUNT study. Mayo Clin Proc. 2017;92:218–27.

    Article  Google Scholar 

  62. Nes BM, Vatten LJ, Nauman J, Janszky I, Wisløff U. A simple nonexercise model of cardiorespiratory fitness predicts long-term mortality. Med Sci Sports Exerc. 2014;46:1159–65.

    Article  Google Scholar 

  63. Artero EG, Jackson AS, Sui X, D-c Lee, O’Connor DP, Lavie CJ, Church TS, Blair SN. Longitudinal algorithms to estimate cardiorespiratory fitness: associations with nonfatal cardiovascular disease and disease-specific mortality. J Am Coll Cardiol. 2014;63:2289–96.

    Article  Google Scholar 

  64. Martinez-Gomez D, Guallar-Castillón P, Hallal PC, Lopez-Garcia E, Rodríguez-Artalejo F. Nonexercise cardiorespiratory fitness and mortality in older adults. Med Sci Sports Exerc. 2015;47:568–74.

    Article  Google Scholar 

  65. Church TS, Earnest CP, Skinner JS, Blair SN. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA. 2007;297:2081–91.

    Article  CAS  Google Scholar 

  66. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301:2024–35.

    Article  CAS  Google Scholar 

  67. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.

    Article  CAS  Google Scholar 

  68. Guallar-Castillón P, Balboa-Castillo T, López-García E, León-Muñoz LM, Gutiérrez-Fisac JL, Banegas JR, Rodríguez-Artalejo F. BMI, waist circumference, and mortality according to health status in the older adult population of Spain. Obesity. 2009;17:2232–8.

    Article  Google Scholar 

  69. Janssen I, Mark AE. Elevated body mass index and mortality risk in the elderly. Obes Rev. 2007;8:41–59.

    Article  CAS  Google Scholar 

  70. McAuley E, Szabo AN, Mailey EL, Erickson KI, Voss M, White SM, Wójcicki TR, Gothe N, Olson EA, Mullen SP. Non-exercise estimated cardiorespiratory fitness: associations with brain structure, cognition, and memory complaints in older adults. Ment Health Phys Act. 2011;4:5–11.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the China Scholarship Council for providing the chance to conduct the study at the University of South Carolina.

Funding

There is no financial support.

Author information

Authors and Affiliations

Authors

Contributions

JZ and XS designed the study. YW and SC collected the data. YW and SC were involved in data cleaning and verification. YW drafted the manuscript. All coauthors contributed to the interpretation of the results and critical revision of the manuscript for important intellectual content and approved the final version of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Xuemei Sui.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Data sharing

No additional data are available.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, S., Lavie, C.J. et al. An Overview of Non-exercise Estimated Cardiorespiratory Fitness: Estimation Equations, Cross-Validation and Application. J. of SCI. IN SPORT AND EXERCISE 1, 38–53 (2019). https://doi.org/10.1007/s42978-019-0003-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-0003-x

Keywords

Navigation